摘要
牙轮钻机采用静液压制动,需要避免系统压力波动对泵产生的冲击,同时钻机的动能或者势能可以回收再利用。通过对静液压制动系统的计算与仿真分析,对闭式泵高压溢流阀参数进行调整,减小系统压力冲击;提出了制动系统能量回收方案,并对能量回收系统进行了数学建模与仿真分析,获得了蓄能器气腔压力随时间的增长关系,揭示了节流阀开度大小与制动时间的关系;对制动系统能量回收效率进行了计算。证明了牙轮钻机采用静液压制动系统的正确性以及能量回收方案的可行性,实现了将钻机动能或者势能转换为蓄能器压力能的能量回收,为大型车辆制动系统能量回收提供了参考。
Hydraulic braking is used on rotary drill, to avoid the impact on the pump caused by the system pressure fluctuations is necessary, and the kinetic or potential energy can be recycled for use of the rotary drill when braking.Through the calculation and simulation analysis of the hydraulic braking system, the pressure relief valve of parameters of the closed pump was adjusted, and the system pressure impact was reduced.Energy recovery strategy of the braking system was proposed, and the mathematical model was es-tablished and the energy recovery system was simulation analyzed.The relationship of the pressure increasing of the accumulator gas chamber along with time was obtained, and the relationship between the size of the throttle opening and the braking time was revealed. The efficiency of energy recovery braking system was calculated.The correctness of the using of hydraulic braking system on rotary drill and the feasibility of energy recovery strategy are verified.Energy recovery is implemented which tranforms the kinetic or potential ener-gy of the rotary drill to pressure energy of the accumulator, and a reference for energy recovery braking system on large vehicle is pro-vided.
出处
《机床与液压》
北大核心
2016年第13期104-108,112,共6页
Machine Tool & Hydraulics
关键词
牙轮钻机
静液压制动
能量回收
回收效率
Rotary drill
Hydraulic braking
Energy recovery
Recovery efficiency