期刊文献+

基于自适应降调频的LFM信号参数估计新算法

Novel Parameter Estimation Algorithm for LFM Signal Based on Adaptive Down-chirp
下载PDF
导出
摘要 为解决现有基于压缩感知理论的线性调频(liner frequency modulation,LFM)信号参数估计中冗余字典规模庞大的问题,提出了一种基于改进谱形熵和降调频的参数估计新算法。该算法首先进行LFM信号的步进降调频处理,通过检测改进谱形熵的极小值获取调频斜率的预估值。其次构建降调频观测矩阵,在压缩采样的同时完成信号的降调频处理。最后通过部分重构算法获得参数估计值。实验结果表明,该算法在SNR≤-3 d B和M≤N/8条件下相比于同类算法具备更好的估计效果,同时运算复杂度得到显著降低。 A novel parameter estimation algorithm based on improved spectrum entropy and down-chirp was proposed,in order to solve the issus of large scale redundant dictionary in the parameter estimation of liner frequency modulation (LFM)signal besed on compressed sensing.Firstly,the LFM signal was processed by down-chirp stepby-step and then the discreet value of the slope of frequency modulation is acquired through detecting the minimum of improved spectrum entropy ,Secondly,a new measurement matrix was structured to complete the compressive sampling and down-chirp simultaneously,Finally,the parameter values were estimated through partial reconstruction algorithm.Simulation results show that this algorithm achieves better estimation effect than similar algorithms under the condition SNR≤-3 dB and M≤N/8,meanwhile the algorithm complexity cuts down significantly.
出处 《科学技术与工程》 北大核心 2016年第21期67-72,共6页 Science Technology and Engineering
基金 国家自然科学基金重点项目(61231011)资助
关键词 降调频 自适应 压缩感知 参数估计 线性调频信号 down-chirp adaptive compressed sensing parameter estimation linear frequency modulation signal
  • 相关文献

参考文献1

二级参考文献17

  • 1CANDES E, ROMBERG J, TAO T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency infor-mation [J]. IEEE Transactions on Information Theory, 2006, 52(2):489-509.
  • 2DONOHO D. Compressed sensing [J]. IEEE Transactions on Informa-tion Theory, 2006,52(4): 1289-1306.
  • 3ELDAR Y C, KUTYNIOK G Compressed Sensing: Theory and Ap-plications [M]. USArCambridge University Press, 2012.
  • 4LU G Block compressed sensing of natural images[C]//The 15thInternational Conference on Digital Signal Processing. Cardiff, c2007:403-406.
  • 5THONG T D, TRAC D T, LU C Fast compressive sampling with structurally random matrices[C]//The 2008 IEEE Intemationa! Con- ference on Acoustics, Speech and Signal Processing(ICASSP). Las Vegas, USA, c2008: 3369-3372.
  • 6MUN S, FOWLER J. E. Block compressed sensing of images usingdirectional transforms[C]//Data Compression Conference(DCC).Snowbird, Utah, c2010: 547.
  • 7FOWLER J E,MUN S, TRAMEL E W. Block-based compressedsensing of images and videofJ], Foundations and Trends in SignalProcessing, 2012(4): 297-416 .
  • 8THONG T D, LU Q NAM H N, et al. Fast and efficient compressivesensing using structurally random matrices [J]. IEEE Transactions onSignal Processing, 2012,60(1): 139-154.
  • 9ARMIN E, HAN L Y,CHRISTOPHER J R, et al. The restricted iso-metry property for random block diagonal matrices[J]. Applied andComputational Harmonic Analysis, 2015,38(1): 1-31.
  • 10VAN T C,DINH K Q,JEON B. Edge-preserving block compressivesensing with projected landweber[C]//The 20th International Confer-ence on Systems, Signals and Image Processing (IWSSIP). Bucharest,Romania, c2013: 71-74.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部