期刊文献+

74GHz毫米波透镜喇叭天线的设计与仿真 被引量:4

Design and simulation of 74 GHz millimeter wave lens horn antenna
下载PDF
导出
摘要 设计了一种应用于毫米波段的透镜喇叭天线,基于几何光学的原理建立透镜和喇叭之间的几何关系,减少了独立的设计变量,并对天线进行了仿真.结果表明:当天线的中心频率为74 GHz时,天线的口径为38.63 mm;在72.5~76 GHz频带范围内,带内电压驻波比VSWR均小于1.5,天线增益大于28 dB,并且E面和H面中的半功率波束宽度分别小于6.5o和8.5o.喇叭天线在加载介质透镜前后三维方向图的仿真结果表明介质透镜可以减小喇叭口面相位误差.所设计的天线具有良好的方向性和增益. A lens horn antenna applying to millimeter wave band was designed. Based on geometric optical principle, the geometric relation between the lens and the horn was created, so the independent design variables were reduced and then antenna was simulated with simulation software. The results show that when the center frequency of the antenna is 74 GHz, the aperture of the antenna is 38.63 mm. The VSWR of the antenna is less than 1.5, the gain is more than 28 dB, and the half-power beam width is less than 6.5o and 8.5o in E-plane and H-plane respectively in the frequency ranges from 72.5 GHz to 76 GHz. The simulated results of 3D patterns obtained from the horn antenna with or without a dielectric lens prove that the dielectric lens can reduce the phase error in the aperture. The antenna has a good directivity and a high gain.
出处 《电子元件与材料》 CAS CSCD 2016年第8期60-64,共5页 Electronic Components And Materials
基金 国家电网电力线巡检科研项目资助(No.JS-12004K)
关键词 毫米波 介质透镜 喇叭天线 几何光学原理 增益 相位误差 millimeter wave dielectric lens horn antenna geometric optical principle gain phase error
  • 相关文献

参考文献2

二级参考文献21

  • 1于洋,孙香.基于HFSS技术喇叭天线的仿真设计[J].微波学报,2012,28(S1):95-98. 被引量:11
  • 2方广有,佐藤源之.频率步进探地雷达及其在地雷探测中的应用[J].电子学报,2005,33(3):436-439. 被引量:33
  • 3谢颖然,李元生,佟文清,胡江华.角锥喇叭天线制造工艺[J].电子工艺技术,2007,28(3):169-170. 被引量:5
  • 4JOSEPH H. Hydrological connectivity of soil pipes determined by ground-penetrating radar tracer detection [J]. Earth Surf Proc Landforms, 2004, 29(4): 437-442.
  • 5LESTARI A A, YAROVOY A G, LIGTHART L P. Analysis and design of improved antennas for GPR [J]. Subrf Sens Technol Appl. 2002, 3(4): 295-326.
  • 6NAJJAR Y, MONEER M, DIB N. Design of optimum gain pyramidal horn with improved formulas using particle swarm optimization [J]. Int .1 RF Microwave Comput-aided Eng, 2007, 17(5); 505-511.
  • 7TONOUCHI M.Cutting-edge terahertz technology[J].Nat Photonics,2007,1(2):97-105.
  • 8ROSTAMI A,RASOOLI H,BAGHBAN H.Terahertz technology fundamentals and applications[M].New York,USA:Springer,2011.
  • 9SHUNTARO M,ISHIZAKA Y,SAITOH K.Slow-light-enhanced nonlinear characteristics in slot waveguides composed of photonic crystal nano-beam cavities[J].IEEE Photonics J,2013,5(2):2700309.
  • 10HRISTOV H D.Terahertz harmonic operation of microwave Fresnel zone plate lens and antenna:frequency filtering and space resolytion properties[J].Int J Antenna Propagation,2011,14(6):1-8.

共引文献2

同被引文献7

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部