期刊文献+

数控机床贝叶斯可靠性评估模型的综合评价方法 被引量:11

Comprehensive Evaluation Approach to Bayesian Reliability Assessment Model of NC Machine tools
下载PDF
导出
摘要 基于DIC(Deviance Information Criterion)信息准则、BGR(Brooks-Gelman-Rubin)诊断原理、蒙特卡洛仿真误差及模型参数和可靠性指标后验估计的区间长度,提出了数控机床贝叶斯可靠性模型的综合评价方法.给出了不同先验下用于Gibbs抽样的幂律过程模型参数的后验分布,并利用马尔科夫链蒙特卡洛法获得了模型参数和可靠性指标的贝叶斯点估计和区间估计.通过2个工程实例进行验证,结果表明,幂律过程模型各项评价指标均优于Weibull分布模型,适用于小样本故障数据数控机床的可靠性评估. Based on deviance information criterion, Brooks-Gelman-Rubin diagnosis principle, Monte Carlo simulation error, and the interval length of posterior estimate for model parameters and reliability indices, the comprehensive evaluation method for Bayesian reliability model of NC machine tools was proposed. The posterior distributions of power law process model used for Gibbs sampling at different priors were given, and the Bayesian point and interval estimate of model parameters and reliability indices were ob- tained by using Markov Chain Monte Carlo simulation. Two real engineering examples were taken to prove the proposed method. The results of each evaluation index show that the power law process model is better than the Weibull model, which is suitable for reliability assessment of NC machine tools with small sample failure data.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2016年第7期1023-1029,共7页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金项目(51565032) 甘肃省青年科技基金计划项目(145RJYA307) 甘肃省高等学校科学研究自筹经费项目(2015B-037)资助
关键词 数控机床 贝叶斯可靠性 DIC信息准则 BGR诊断 幂律过程 numerical control machine tool Bayesian reliability deviance information criterion Brooks Gelman-Rubin diagnossis power law process
  • 相关文献

参考文献14

二级参考文献83

  • 1付永领,韩国惠,王占林,陈娟.气缸双应力恒加试验的优化设计[J].机械工程学报,2009,45(11):288-294. 被引量:4
  • 2许彬彬,杨兆军,陈菲,郝庆波,赵宏伟,李国发.非齐次泊松过程的数控机床可靠性建模[J].吉林大学学报(工学版),2011,41(S2):210-214. 被引量:16
  • 3Crow L H. Reliability analysis for complex repairable systems[M]//Proschan F, Serfling R J. Reliability and Biom etry, Statisticalandysis of Life Length. Philadelphia:SIAM,1974:379-410.
  • 4Guida M, Calabria R, Pulcini G. Bayes inference for a non homogeneous poisson process with power intensity law[J]. IEEE Trans. Reliability, 1989, 38(5):603-609.
  • 5Bar-Lev S K, Lavi I, Reiser B. Bayesian inference for the power law process[J]. Ann. Inst. Statist. Math. , 1992, 44(4) :623-639.
  • 6Sen A, Khattree R. On estimating the current intensity of failure for the power-law process[J]. Journal of Statistical Planning and Inference, 1998, 74 : 253-272.
  • 7Sen A. Bayesian estimation and prediction of the intensity of the power law process[J]. J. Statist. Comput. Simul. , 2002, 72(8):613-631.
  • 8Gilks W R, Richardson S, Spiegelhalter D J. Full conditional distributions [M]//Markov Chain Monte Carlo in Practice. London: Chapman and Hall, 1996.
  • 9Smith A F M, Gelfand A E. Bayesian statistics without tears: a sampling-resampling perspective[J]. The American Statistician, 1992, 46: 84-88.
  • 10Gilks W R, Wild P. Adaptive rejection sampling for gibbs sampling[J]. Appl. Statist. , 1992, 41(2):337-348.

共引文献62

同被引文献84

引证文献11

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部