期刊文献+

带有匹配估计方法物联网基于内容的实体搜索机制 被引量:2

Content-Based Entity Search with a Matching Estimation Approach for Internet of Things
下载PDF
导出
摘要 提出了实体状态预测方法,基于传感器采集的实体状态原始数据,预测实体在用户搜索时刻的状态,设计了实体匹配估计方法,依据实体的预测状态对实体的匹配状态进行分类,并估计其与搜索需求的匹配概率,返回匹配概率较高的实体作为搜索结果.结果表明,所提机制在物联网中基于内容的实体搜索的查全率与查准率方面均有较大的性能增益. An entity state prediction method based on the raw entity state data observed by the attached sensor was proposed to predict the state of entities at the query time. Moreover, an entity matching esti- mation approach was designed to classify these entities and estimate their matching probabilities with the search needs based on the state of entities predicted. The entities that own higher matching probabilities will be returned as the search results. Numerical results show that the search mechanism proposed can achieve a better recall ratio and precision performance in terms of content-based entity search in the Internet of Things.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2016年第7期1060-1064,1070,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金项目(61272518) 民用航天十二五科技项目 北京市高等学校青年英才计划项目 安全生产智能监控北京市重点实验室资助
关键词 物联网 实体搜索 状态预测 匹配估计 Internet of Things entity search state prediction matching estimation
  • 相关文献

参考文献10

  • 1邹志文,李桥,寇爱军.传感器网络空间关键字近似Top-k查询算法[J].上海交通大学学报,2014,48(10):1457-1460. 被引量:1
  • 2WU D P, HE J, WANG H G, et al. A hierarchical packet forwarding mechanism for energy harvesting wireless sensor networks [J]. IEEE Communications Magazine, 2015, 53(8): 92-98.
  • 3ROER K, OSTERMAIER B, MATTERN F, et al. Real-time search for real-world entities A survey [J]. Proceedings of the IEEE, 2010, 98(11): 1887- 1902.
  • 4WANG H D, TAN C C, LI Q. Snoogle: A search engine for pervasive environments [J]. IEEE Trans- actions on Parallel and Distributed Systems, 2010, 21 (8) .. 1188-1202.
  • 5OSTERMAIER B, R(}MER K, MATTERN F, et al. A real-time search engine for the web of things [C] // Proceedings of the 2010 Internet of Things. Ja- pan: IEEE, 2010..1-8.
  • 6TRUONG C, RC)MER K. Content-based sensor search for the web of things [C]//2013 IEEE Global Communications Conference. America: iEEE, 2013.. 2654-2660.
  • 7尚军亮,方敏.一种优化的高精度灰色GM(1,1)预测模型[J].电子与信息学报,2010,32(6):1301-1305. 被引量:42
  • 8郑健,孙文娟.基于等维灰数递补动态GM(1,1)模型的城市大气环境质量预测研究[J].内蒙古师范大学学报(自然科学汉文版),2013,42(5):583-589. 被引量:8
  • 9MADDEN S. IntelLab data[EB/OL]. (2004-06-02) [-2014-08-161. http://db, csail, mit. edu/labdata/lab- data. html.
  • 10National oceanic and atmospheric administration. NOAA data [EB/OL]. (2015-02-15) E2015-03-12. http ://tidesandcurrents. noaa. gov/lmindata, html.

二级参考文献29

  • 1李玻,魏勇.优化灰导数后的新GM(1,1)模型[J].系统工程理论与实践,2009,29(2):100-105. 被引量:83
  • 2王淑兰,柴发合,张远航,周来东,王琴玲.成都市大气颗粒物污染特征及其来源分析[J].地理科学,2004,24(4):488-492. 被引量:75
  • 3党耀国,刘思峰,刘斌.以x^((1))(n)为初始条件的GM模型[J].中国管理科学,2005,13(1):132-135. 被引量:210
  • 4张怡,魏勇,熊常伟.灰色模型GM(1,1)的一种新优化方法[J].系统工程理论与实践,2007,27(4):141-146. 被引量:85
  • 5Li H,Su L D,and Butterworth J.Grey forecasting model for active vibration control systems[J].Journal of Sound and Vibration,2009,322(4-5):690-706.
  • 6Wei L S,Fei M R,and Zhao W Q.Analysis of grey prediction based iterative learning control[C].Prceedings of the 2008 IEEE International Conterence on Information and Automation,Hubei,2008:1096-1100.
  • 7Lin Y H,Lee P C,and Chang T P.Adaptive and-highprecision grey forecasting model[J].Expert Systems with Applications,2009,36(6):9658-9662.
  • 8KAN Haidong, CHEN Bingheng. Particulate air pollution inurban areas of Shanghai, China~ health-based economic assessment [J].cience of the Total Environment,2004,322(1/2~3)~71-79.
  • 9CHEUNG H C,WANG Tao,BAUMANN K,et al. Influence of regional pollution outflow on the concentrations of fine particulate matter and visibility in the coastal area of southern China[J]. Atmospheric Environment, 2005,39 (24)~ 6463-6474.
  • 10国家环保总局.环境空气质量标准(GB3095-1996)[s].北京:中国环境科学出版社,1996.

共引文献48

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部