期刊文献+

前列腺癌多参数MRI计算机辅助诊断系统的构建 被引量:6

Setup of computer-aided diagnosis system for prostate cancer on multiparametric MRI
下载PDF
导出
摘要 多参数磁共振成像(multiparametric MRI,mp MRI)已成为前列腺癌检出、分期、指导活检及治疗后随访最常用的影像学方法。由于MRI技术的复杂性,诊断具有较强的经验依赖性。计算机辅助诊断(computer-aided diagnosis,CAD)技术可进行多变量分析,提高疾病的临床诊断效能,近年来广泛应用于医学图像分析。基于mp MRI的前列腺癌CAD系统近几年取得了较大进展并显现出良好的应用前景,本文结合本单位实际经验,简要介绍CAD在前列腺癌mp MRI诊断中的进展。 Multiparametric MRI (mpMRI) has been considered as the method of choice for prostate cancer detection, staging, guidance for biopsy and treatment follow-up. However, effectiveness of mpMRI is usually affected by personal experience and expertise. Computer-aided diagnosis (CAD) system shows promise for improved prostate cancer diagnosis. This article aims to review the technique advance and effectiveness comparison of the state-of-the-art CADs for prostate cancer on mpMRI.
出处 《肿瘤影像学》 2016年第2期117-122,共6页 Oncoradiology
关键词 计算机辅助诊断 磁共振成像 前列腺癌 Computer-aided diagnosis Magnetic resonance imaging Prostate cancer
  • 相关文献

参考文献2

二级参考文献25

  • 1Global cancer facts and figures 2007 [ M ]. Atlanta, GA : American Cancer Society, 2007.
  • 2Oliver SE, May MT, Gunnel D. International trends in prostatecancer mortality in the "PSA ERA" [J]. Int J Cancer, 2001, 92 (6) : 893 -898.
  • 3Fausett LV. Fundamentals of neural networks : architectures, algorithms, and applications[M]. USA: Prentice-Hall, 1994.
  • 4Ripley BD. Pattern recognition and neural networks [ M ]. UK: Cambridge University Press, 1996.
  • 5Reekwitz T, Potter SR, Snow PB, et al. Artificial neural networks in urology[J]. Prostate Cancer P D, 1999, 2(5) : 222 -226.
  • 6Finne P, Finne R, Auvinen A, et al. Predicting the outcome of prostate biopsy in screen-positive men by a multilayer perceptron network[J]. Urology, 2000, 56(3): 418-422.
  • 7Djavan B, Remzi M, Zlotta A, et al. Novel artificial neural network for early detection of prostate cancer [ J ]. J Clin Oncol, 2002, 20(4) : 921 -929.
  • 8Finne P, Finne R, Bangma C, et al. Algorithm based on prostate specific antigen (PSA) , free PSA, digital rectal examination and prostate volume reduce false-positive PSA results in prostate cancer screening[ J1. Int J Cancer. 2004. 111(2) : 310 -315.
  • 9Stephan C, Xu C, Finne P, et al. Comparison of two artificial neural networks for prostate biopsy indication in two different patient populations [ J]. Urology, 2007, 70 (3) : 596 - 601.
  • 10Porter CR, O'Donnell C, Crawford ED, et al. Predicting the outcome of prostate biopsy in a racially diverse population : a prospective study[J].Urology, 2002, 60 (5) : 831 - 835.

共引文献20

同被引文献38

引证文献6

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部