期刊文献+

基于子空间投影角度配对的L型阵列二维DOA估计算法 被引量:2

An L-Shaped 2-D Direction of Arrival Estimation Based on Subspace Projection Pair Matching
下载PDF
导出
摘要 针对传统二维MUSIC角度估计计算量巨大的缺点,及Root-MUSIC算法可减少计算量却无法完成角度配对的问题,提出了一种基于子空间投影角度配对的L型阵列二维DOA估计算法。该方法利用Root-MUSIC算法估计L型阵列的角度参数,并利用子空间投影完成方位角和俯仰角的角度匹配,从而得到正确的二维DOA结果。计算机仿真验证了该方法的有效性。 The computation complexity of conventional 2-dimensional multiple signal classifica- tion (2-D MUSIC) method is very high, which can be reduced by the Root-MUSIC algorithm. However,the automatic pair matching cannot be obtained in the Root-MUSIC method. In order to solve the aforementioned problem, a 2-dimensional direction of arrival (DOA) estimation al- gorithm based on the subspace projection pair matching is proposed for L-shaped array. In the proposed method, the angle parameters of two perpendicular linear arrays in the L-shaped array are obtained by the 1-D Root-MUSIC method. In the following, the pair matching of azimuth and elevation angles can be achieved by the subspace projection operation. The effectiveness of proposed method is demonstrated by the simulation data.
出处 《电子信息对抗技术》 2016年第4期11-15,42,共6页 Electronic Information Warfare Technology
关键词 L型阵列 二维DOA估计 角度配对 子空间投影 L-shape array 2-dimensional DOA estimation pair matching subspace projection
  • 相关文献

参考文献9

  • 1郭福成,樊昀,周一宇,等.空间电子侦察定位原理[M].北京:国防工业出版社,2012:81-86.
  • 2HUA Y,SARKAR T K. An L-shaped Array for Esti- mation 2 - D Directions of Wave Arrival [ J ]. IEEE Trans on Antennas and Propagation, 1991,39 ( 2 ) : 143 -146.
  • 3TAYEM N, KWON It M. L- Shaped 2- Dimensional Arrival Angle Estimation with Propagator Method [ J ]. IEEE Trans on Antennas and Propagation, 2005,53 ( 5 ) : 1622-1630.
  • 4陈建.二维波达方向估计理论研究[D].吉林:吉林大学,2006.
  • 5连小华,周建江.双L型阵列DOA估计的PM算法的性能分析与改进[J].航空学报,2007,28(5):1122-1129. 被引量:3
  • 6SCHMIDT R. Muhiple Emitter Location and Signal Parameter Estimation [ J ]. IEEE Trans on Antennas and Propagation, 1986,34( 3 ) :276-280.
  • 7MATHEWS C P,ZOLTOWSKI M D. Eigenstructure Techniques for 2- D Angle Estimation with Uniform Circular Arrays [ J ]. 1EEE Trans on Signal Process- ing ,1994,42 ( 9 ) :2395-2407.
  • 8MARIUS P,ALEX B G. Unitary Root-MUSIC With Real-Valued Eigendecomposition: A Theoretical and Experimental Performance Study[ J]. IEEE Trans on Signal Processing, 2000,48 ( 5 ) : 1306-1314.
  • 9KIKUCHI S,TSUJI H,Sano A. Pair-matching Meth- od for Estimating 2-D Angle of Arrival with a Cross- Correlation Matrix [ J ]. 1EEE Antennas Wireless Propag Lett,2006 ( 5 ) :35 -40.

二级参考文献17

  • 1Schmidt R O.Multiple emitter location signal parameter estimation[J].IEEE Trans on AP,1986,3(3):276-280.
  • 2Schmidt R O.A signal subspace approach to multiple estimator location and spectral estimation[D].Stanford:Stanford University,1981.
  • 3Roy R H.ESPRIT:estimation of signal parameters via rotational invariance techniques[D].Stanford:Stanford University,1987.
  • 4Swindlehurst A,Kailath T.Azimuth/elevation direction finding using regular array geometries[J].IEEE Trans on ASSP,1993,29(1):145-155.
  • 5Roy R,Paulraj A,Kailath T.Estimation of signal parameters via rotational invariance techniques-ESPRIT[C]∥Acoustic Speech and Signal Processing,IEEE International Conference on ICASSP.1986:2495-2498.
  • 6Roy R,Kailath T.ESPRIT-estimation of signal parameters via rotational invariance techniques[J].Opt Eng,1990,29(4):296-313.
  • 7Tayem N,Kwon H M.L-shape 2-D arrival angle estimation with propagator method[J].IEEE Trans on AP,2005,53(5):1622-1630.
  • 8Marcos S,Marsal A,Benidir M.Propagator method for source bearing estimation[J].Signal Processing,1995,42(2):121-138.
  • 9Marcos S.Calibration of a distorted towed array using a propagator method[J].J Acoust Soc Amer,1993,93(4):1987-1994.
  • 10Marcos S,Marsal A,Benidir M.Performances analysis of the propagator method for source bearing estimation[C]∥Acoustic Speech Signal Processing,IEEE International Conference on ICASSP.1994:237-240.

共引文献24

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部