期刊文献+

基于Lanczos双A-正交的一种修正的QMR算法 被引量:2

A MODIFIED QMR ALGORITHM BASED ON THE A-LANCZOS BIORTHOGONAL PROCESS
下载PDF
导出
摘要 本文研究了基于Lanczos双正交过程的拟极小残量法(QMR).将QMR算法中的Lanczos双正交过程用Lanczos双A-正交过程代替,利用该算法得到的近似解与最后一个基向量的线性组合来作为新的近似解,使新近似解的残差范数满足一个一维极小化问题,从而得到一种基于Lanczos双A-正交的修正的QMR算法.数值试验表明,对于某些大型线性稀疏方程组,新算法比QMR算法收敛快得多. The quasi minimum residual method(QMR) based on the Lanczos bi-orthogonal process was studied in this paper.A-Lanczos bi-orthogonal process was introduced to replace the Lanczos bi-orthogonal process.Using the linear combination of the approximate solution and the lasted basis vectoris as a new approximate solution of the algorithm,the residual norm of new approximate solution can satisfy a one-dimensional minimization problem,so as to get a modified QMR algorithm based on the A-Lanczos bi-orthogonal process.The numerical experiments showed that the new algorithm converges faster than the original QMR algorithm for some large sparse linear systems.
出处 《数学杂志》 CSCD 北大核心 2016年第4期767-774,共8页 Journal of Mathematics
基金 国家自然科学基金重大研究计划培育项目(91230111) 国家自然科学基金项目(11361002) 北方民族大学院级项目(2012xjyk09)
关键词 KRYLOV子空间方法 双A-正交过程 线性方程组 Krylov subspace methods bi-conjugate A-orthonormalization procedure linear systems
  • 相关文献

参考文献3

二级参考文献32

  • 1Zhong-xiao Jia (Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China) Ludwig Elsner (Fakultat fur Mathematik, University Bielefeld, Postfach 100131, 33501 Bielefeld,Germany).IMPROVING EIGENVECTORS IN ARNOLDI'S METHOD[J].Journal of Computational Mathematics,2000,18(3):265-276. 被引量:4
  • 2安恒斌,白中治.NGLM:一类全局收敛的Newton-GMRES方法[J].计算数学,2005,27(2):151-174. 被引量:14
  • 3白中治,安恒斌.关于Newton-GMRES方法的有效变型与全局收敛性研究[J].数值计算与计算机应用,2005,26(4):291-300. 被引量:11
  • 4Zhongxiao Jia.Generalized block Lanczos methods for large unsymmetric eigenproblems[J]. Numerische Mathematik . 1998 (2)
  • 5Zhongxiao Jia.A block incomplete orthogonalization method for large nonsymmetric eigenproblems[J]. BIT Numerical Mathematics . 1995 (4)
  • 6K. Meerbergen,A. Spence,D. Roose.Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices[J]. BIT . 1994 (3)
  • 7Diem Ho.Tchebychev acceleration technique for large scale nonsymmetric matrices[J]. Numerische Mathematik . 1989 (7)
  • 8A. Ruhe.Rational krylov algorithms for nonsymmetric eigenvalue problems, II: Matrix pairs. Linear Algebra and Its Applications . 1994
  • 9Chatelin,F.,Godet-Thobie,S.,Durand,M.,Dabaghi,F. E. Stability analysis in aeronautical industries . 1991
  • 10Ho,D.Tchebychev acceleration technique for large scale nonsymmetric matrices. Numerical Mathematics . 1990

共引文献17

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部