摘要
本文研究了一类非凸最优化问题的凸化方法与最优性条件的问题.利用构造含有参数的函数变换方法,将具有次正定性质的目标函数凸化,并获得了这一类非凸优化问题全局最优解的充要条件,推广了凸化方法在求解全局最优化问题方面的应用.
In this paper,we develop convexification approaches and optimization criteria for a general class of nonconvex optimization problem.By using the method of function transformations with parameter,a class of novel convexification schems is presented for solving global optimization problem with positive sub-definite objective function.The general class of nonconvex programming discussed in the paper can be solved to global optimality,which extends applications of convexification schems in solving global optimization problems.
出处
《数学杂志》
CSCD
北大核心
2016年第4期851-858,共8页
Journal of Mathematics
基金
山东省优秀中青年科学家科研奖励基金资助(BS2013SF014)
关键词
全局优化
次正定函数
凸化
充要条件
global optimization
positive sub-definite function
convexification
necessary and sufficient condition