期刊文献+

基于小波多分辨率分析和改进窄带法的C-V水平集图像分割模型 被引量:1

THE IMPROVED C-V LEVEL SET IMAGE SEGMENTATION MODEL BASED ON WAVELET ANALYSIS AND NARROW BAND
下载PDF
导出
摘要 本文研究了基于小波分析改进的C-V模型图像分割问题.利用小波多分辨率分析和改进的窄带水平集方法,获得了比传统C-V模型分割速度更快、准确度更高、算法复杂度更低的分割结果.推广了C-V水平集模型如何快速准确地分割灰度不均匀的图像和窄带水平集法等结果. In this paper,we study the problem of image segmentation of C-V model.By using the wavelet transform and the improved level set and narrow band method,image edge information and the initial segmentation curve are obtained.We get a segmentation result which is faster in segmentation speed,higher in accuracy and lower in algorithm complexity than traditional C-V model.The results of the C-V level set model for the segmentation of gray uneven images and the initialization of the zero level set and the narrow band method are generalized.
出处 《数学杂志》 CSCD 北大核心 2016年第4期867-874,共8页 Journal of Mathematics
关键词 图像分割 C-V水平集 小波变换 窄带法 image segmentation C-V level set wavelet transform narrow band method
  • 相关文献

参考文献12

  • 1CHAN T, VESE L. Active contours without edges[J]. IEEE Trans. Image Proc., 2001, 10(2): 266-- 277.
  • 2Vese L, Chan T. A nmltiphase level set franmwork for image segmentation using the Mumford and Shah model[J]. Intern. J. Comput. Vis., 2002, 50(3): 271 293.
  • 3Zhu Guopu, Zeng Qingshuang, Wang Changhong. Boundary-based image segmentation using binary level set method[J]. Opt. Eng., 2007, 46(5): 050501-1-050501-3.
  • 4Zhang K H, Song H H, Zhang L. Active contours driven by local image fittingenergy[J]. Pattern Recognit, 2010, 4(43): 1199 1206.
  • 5Liu S, Peng Y. A local region-based Chan- Vese model for image segmentation[.l]. Pattern Recognit 2012, 45:2769 2779.
  • 6Zheng Q, Lu Z, Yang W. A robust medical image segmentation method using KL distance and local neighborhood information[J]. Comput. Biol. Med., 2013, 43: 459--470.
  • 7Wang L, Li C, Sun Q, Xia D, Kao C Y. Active contours driven by local and globalintensity fitting energy with application to brain MR image segmentation[J]. Comput. Med. Imag. Graph., 2013, 33: 520 531.
  • 8Vovk F, Pern S, Likar B. A review of methods for correction of intensity inhomogeneity in MRI[J]. IEEE Trans. Med. Imag., 2007, 26(3): 405-421.
  • 9Ooi W S, Lim C P. Multi-objective image segmentation with an interactive evolutionary computa- tion approach[J]. J. Intel. Fuzzy Sys., 2013, 24(1): 239-249.
  • 10胡海平,周董平.基于小波域的多尺度非参数图像分割方法[J].应用数学与计算数学学报,2013,27(4):443-449. 被引量:1

二级参考文献33

  • 1杨鸿波,时永刚,邹谋炎.一种非参数估计的活动围道图像分割方法[J].电子与信息学报,2004,26(12):1849-1855. 被引量:5
  • 2李旭超,朱善安.小波域图像降噪概述[J].中国图象图形学报,2006,11(9):1201-1209. 被引量:42
  • 3摆玉龙,杨志民.基于Parzen窗法的贝叶斯参数估计[J].计算机工程与应用,2007,43(7):55-58. 被引量:14
  • 4Chan T F, Vese L A. Active contours without edges [ J]. IEEE Transactions on Image Processing, 2001, 10 ( 2 ) : 266 - 277.
  • 5Anusha A, Mandava R, Dhanesh R, et al. Wavelet energyguided level set-based active contour: A segmentation method to segment highly similar regions [ J ]. Computers in Biology and Medicine, 2010, 40 (7): 608-620.
  • 6Mallat S G. A theory for muhiresolution signal decomposition: the wavelet representation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11 (7) : 674 - 693.
  • 7King M D, Menzel W P, Grant P S, et al. Airborne scanning spectrometer for remote sensing of cloud, aerosol, water vapor and surface properties [ J]. Journal of Atmospheric and Oceanic Technology., 1996, 13 (4) : 777 -794.
  • 8Li Chunming, Kao Chiu-Yen, Gore John C, et al. Minimization of region-scalable fitting energy for image segmentation [ J ]. IEEE Transactions on Image Processing, 2008, 17 (10) : 1940-1949.
  • 9Kass M, Witkin A, Terzopouls D. Snake: active contour models[J]. Proceeding of International Journal of Computer Vision, 1988, 1(4): 321-331.
  • 10Terzopoulos D, Fleischer K. Deformable models[J]. Visual Computer, 1988, 4(6): 306-331.

共引文献3

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部