期刊文献+

基于罚函数的设施定位布置问题模型与算法

Model and Algorithm for Fixed-positioning Layout Based on Penalty Function
下载PDF
导出
摘要 针对系统内部设施布置决策,以定位布置问题为研究对象,提出了一种求解该问题的改进分布估计算法(IEDA)。通过分析定位布置问题的基本特征,建立了带容量约束的基本非线性整数规划模型;引入了基于罚函数的约束处理方法建立了定位布置问题的改进数学模型,进而使用带惩罚项的目标函数引导IEDA的搜索方向;在IEDA中融入了一种概率矩阵变异机制和基于互换型邻域结构的局部搜索策略,用于平衡算法的全局和局部搜索能力;并通过仿真实验比较和对某建筑工地实例求解验证了模型的合理性与算法的有效性。 Considering the decision of interior facility layout in the production systems and aiming at facility layout problem,an improved estimation of distribution algorithm(IEDA)is given to solve this problem. Firstly,based on its essential characteristics,a nonlinear integer programming model with capacity constraints is established to formulate associated basic properties. Secondly,a modified mathematical model combining with the penalty function based constraint handling method is constructed,which indicates that if the capacity constraint of any position is not satisfied,the related penalty term will be set to a high punishment,otherwise set to zero. And thereafter,the objective function with penalty terms is used to guide the search direction of our proposed IEDA. Thirdly,a mutation mechanism for probability matrix and an interchange-based local search with first move strategy are embedded into IEDA to balance the global and local search ability. Finally,the results of simulation experiments and case study from a construction site demonstrate the rationality of the model and the effectiveness of the presented IEDA.
出处 《工程管理学报》 2016年第3期116-121,共6页 Journal of Engineering Management
基金 国家自然科学基金项目(71572031) 辽宁省教育厅人文社科基地项目(ZJ2013014)
关键词 定位布置问题 分布估计算法 罚函数 仿真实验 fixed-positioning layout problem estimation of distribution algorithm penalty function simulation experiments
  • 相关文献

参考文献12

  • 1Lee H Y, Kang S, Chae J. Mutation effects in a genetic algorithm for a facility layout problem in QAP form [J]. International Journal of Advanced Logistics, 2015, 4 (3): 170-179.
  • 2张鸿宾.组合优化问题的启发式搜索[J].计算机科学,1998,25(2):13-16. 被引量:6
  • 3PotLrvaziri H, Naderi B, Pourvaziri H, et al. A hybrid multi-population genetic algorithm for the dynamic facility layout problem[J]. Applied Soft Computing, 2014, 24 (24): 457-469.
  • 4Garcia-Hemndez L, Palomo-Romero J M, Salas-Morera L, et al. A novel hybrid evolutionary approach for capturing decision maker knowledge into the unequal area facility layout problem[J]. Expert Systems with Applications, 2015, 42 (10): 4697-4708.
  • 5Guan J, Lin G. Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem[J]. European Journal of Operational Research, 2016, 248 (3): 899-909.
  • 6Liu J, Teo K L, Wang X, et al. An exact penalty function-based differential search algorithm for constrained global optimization[J]. Soft Computing, 2015: 1-9.
  • 7Ho P Y, Shimizu K. Evolutionary constrained optimization using an addition of ranking method and a percentage-based tolerance value adjustment scheme[J]. Information Sciences ( S0020-0255 ), 2007, 177 ( 14 ): 2985-3004.
  • 8Wang Y, Caiz X, Guo G Q. Multi objective optimization and hybrid evolutionary algorithm to solve constrained optimization problems[J]. IEEE Trans on Systems, Man and Cybernetics-Part B: Cybernetics (S1083-4419), 2007, 37 (3): 560-575.
  • 9王凌,何锲,金以慧.智能约束处理技术综述[J].化工自动化及仪表,2008,35(1):1-7. 被引量:13
  • 10Hauschild M, Pelikan M. An introduction and survey of estimation of distribution algorithms[J]. Swarm & Evolutionary Computation, 2011, 1 (3): 111-128.

二级参考文献38

  • 1周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 2钟润添,龚海峰,李斌,庄镇泉.一种多目标优化的多概率模型分布估计算法[J].计算机仿真,2007,24(4):180-182. 被引量:6
  • 3COELLO C A C, MONTES E M. Constraint-handling in Genetic Algorithms through the Use of Dominance-based Tournament Selection [ J ]. Advanced Engineering Informatics ( S1474- 0346) ,2002,16(3) :193-203.
  • 4PULIDO G T,COELLO C A C. A Constraint-handling Mechanism for Particle Swarm Optimization [ C ]//Proc of IEEE CEC. 2004 : 1396-1403.
  • 5HEDAR A, FUKUSHIMA M. Derivative-free Filter Simulated Annealing Method for Constrained Continuous Global Optimization [ R ]. Japan, Kyoto : Kyoto University ,2004:7.
  • 6CAI Z X,WANG Y. A Multiobjective Optimization-based Evolutionary Algorithm for Constrained Optimization [ J ]. IEEE Trans on Evolutionary Computation (S1089-778X) , 2006,10 (3) :658-675.
  • 7WANG Y, CAI Z X, GUO G Q,et al. Multiobjective Optimization and Hybrid Evolutionary Algorithm to Solve Constrained Optimization Problems [ J ]. IEEE Trans on Systems, Man and Cybernetics-Part B: Cybernetics (S1083- 4419 ), 2007, 37 (3) :560-575.
  • 8DAVIDOR Y. A Genetic Algorithm Applied to Robot Trajectory Generation [ M ]/! Davis L. Handbook of Genetic Algorithms. New York : Van Nostrand Reinhold, 1991 : 144-165.
  • 9KIM D G,HUSBANDS P. Mapping Based Constraint Handling for Evolutionary Search:Thurston' s Circle Packing and Grid Generation[ M]//Parmee I. The Integration of Evolutionary and Adaptive Computing Technologies with Product/System Design and Realization. Plymouth : Springer, 1998 : 161-173.
  • 10REYNOLDS R G. An Introduction to Cultural Algorithms[ C ]// Proc of CEP. 1994:131-139.

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部