期刊文献+

推进式搅拌器固液混合的计算流体力学模拟 被引量:12

CFD simulation of solid-liquid mixing in stirred vessel by propeller agitator
下载PDF
导出
摘要 为了研究推进式搅拌器的固液混合性能并为设计和优化提供依据,通过建立其计算流体力学模型,探讨了固体颗粒由沉积在搅拌罐底部的初态达到稳定混合的过程.搅拌器旋转、固液两相混合和罐内湍流分别采用多重参考系法、欧拉模型和标准k-ε离散模型进行模拟,初态颗粒沉积由补丁函数实现.根据流速场、固颗粒分布、力矩与功率数据研究了不同工况对力矩、功率和悬浮状态的影响,并改进底部结构以减少底部沉积.数值仿真结果表明:推进式搅拌器轴向循环显著,颗粒分布较为理想,转速和体积分数增加会提高总力矩和功率,颗粒增大则会减小压力力矩、增大切应力力矩,并且加重沉积;底挡板能够减少底部沉积并且促进颗粒悬浮.所建模型和模拟结果能够有助于加深对推进式搅拌器流场特性的了解,并有利于对其进行设计和优化. In order to investigate the solid-liquid mixing performance of the propeller agitator and provide foundation for its design and optimization,the process from the initial condition for the granules accumulating on the bottom to the steady condition is simulated by establishing the computational fluid dynamics model. The rotation of the propeller agitator,solid-liquid mixing,and turbulence in the vessel are simulated by the multiple reference frame approach,the Eulerian model,and the standard k-εdispersed model,respectively. The initial accumulation is achieved with the patch function. According to the data of flowvelocity field,solid granule distribution,moments and power,the effects of different working conditions on torque,power and suspension are discussed,and the bottom structure is improved to reduce accumulation. Numerical simulation results indicate that the axial circle of the propeller agitator is obvious,and the granule distribution is ideal. Growth of rotational speed and concentration will increase the total torque and power,and larger granules will aggravate accumulation,reduce pressure moments and raise shear stress moments. Bottom baffles can reduce accumulation and promote granule suspension. The established model and simulation results help understand the flowfield characteristics of the propeller agitator,and are useful for its design and optimization.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第4期713-719,共7页 Journal of Southeast University:Natural Science Edition
基金 "十二五"国家科技重大专项资助项目(2013ZX04008011)
关键词 推进式搅拌器 计算流体力学 混合过程 颗粒分布 propeller agitator computational fluid dynamics mixing process granule distribution
  • 相关文献

参考文献15

  • 1Micale G, Montante G, Grisati F, et al. CFD simula- tion of particle distribution in stirred vessels [ J ]. Chemi- cal Engineering Research and Design, 2000, 78 ( 3 ) : 435 - 444. DOI- 10. 1205/026387600527338.
  • 2Micale G, Grisafi F, Rizzuti L, et al. CFD simulation of particle suspension height in stirred vessels [ J ]. Chemical Engineering Research and Design, 2004, 82 (9) : 1204 - 1213. DOI: 10. 1205/cerd. 82. 9. 1204.44171.
  • 3Kasat G R, Khopkar A R, Ranade V V, et al. CFD simulation of liquid-phase mixing in solid-liquid stirred reactor [ J ]. Chemical Engineering Science, 2008, 63 (15) : 3877 - 3885. DOI: 10. 1016/j. ces. 2008.04.018.
  • 4Wadnerkar D, Utikar R P, Tade M O, et al. CFD sim- ulation of solid-liquid stirred tanks [ J ]. Advanced Pow- der Technology, 2012, 23(4): 445-453. DOI: 10. 1016/j. apt. 2012.03. 007.
  • 5Coroneo M, Montante G, Paglianti A, et al. CFD pre- diction of fluid flow and mixing in stirred tanks : Numer- ical issues about the RANS simulations [ J ]. Computers & Chemical Engineering, 2011, 35 (10) : 1959 - 1968. DOI: 10. 1016/j. compchemeng. 2010.12. 007.
  • 6Singh H, Fletcher D F, Nijdam J J. An assessment of different turbulence models for predicting flow in a baf- fled tank stirred with a Rushton turbine [ J ]. Chemical Engineering Science, 2011, 66 ( 23 ) : 5976 - 5988. DOI: 10. 1016/j. ces. 2011.08. 018.
  • 7Zhao H L, Zhang Z M, Zhang T A, et al. Experimen- tal and CFD studies of solid-liquid slurry tank stirred with an improved intermig impeller[ J ]. Transactions of Nonferrous Metals Society of China, 2014, 24 (8) :2650 - 2659. DOI: 10. 1016/s1003-6326 (14) 63395-1.
  • 8Tamburiui A, Cipollina A, Micale G, et al. CFD simu- lations of dense solid-liquid suspensions in baffled stirred tanks: Prediction of suspension curves [ J ]. Chemical Engineering Journal, 2011, 178:324 - 341. DOI: 10. 1016/j. cej. 2011.10. 016.
  • 9Tamburini A, CipoUina A, Micale G, et al. CFD sim- ulations of dense solid-liquid suspensions in baffled stirred tanks: Prediction of solid particle distribution [J]. Chemical Engineering Journal, 2013, 223:875 - 890.
  • 10Tamburini A, Cipollina A, Micale G, et al. CFD sim- ulations of dense solid-liquid suspensions in baffled stirred tanks: Prediction of the minimum impeller speed for complete suspension [ J ]. Chemical Engi-neering Journal, 2012, 193: 234. - 255. DOI: 10. 1016/j. cej. 2012.04. 044.

二级参考文献26

共引文献42

同被引文献103

引证文献12

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部