期刊文献+

结霜初期超疏水表面凝结液滴的自跳跃脱落及其对结霜过程的影响 被引量:14

Jumping of condensation droplets on superhydrophobic surfaces at early frosting stage and its effects on frost formation
下载PDF
导出
摘要 制备了具有微纳复合结构的超疏水表面,对其结霜过程进行了可视化观测,揭示了结霜初期表面凝结液滴的自跳跃行为及其对结霜过程的影响,并与普通表面的结霜过程进行了对比研究.实验结果表明,结霜初期,超疏水表面的凝结液滴频繁出现合并后自跳跃现象,根据液滴合并前的尺寸大小,可将自跳跃行为分为3类,而普通表面未观察到类似现象;液滴自跳跃临界半径随着液固接触面积分数的降低和表面接触角的增大而减小.初始凝结液滴的自跳跃降低了超疏水表面液滴覆盖率和分布密度,同时引起表面霜层生长的不均匀性和霜晶结构的差异.与普通表面相比,超疏水表面可有效抑制结霜,延缓霜层生长速率. A superhydrophobic surface with micro-nano structure was prepared and the visualization was carried out to study its frost formation. The jumping of condensation droplets on superhydrophobic surface at early frosting stage and its effects on the frost formation were revealed and compared with those of bare surfaces. Experimental results showthat the jumping behaviors of the condensation droplets frequently appear on the superhydrophobic surface at early frosting stage. The behavtors can be divided into three types according to the sizes of the droplets before the coalescence,while there is no jumping behavior on the bare surface. The jumping critical radius decreases with the increase of the surface contact angle and the decrease of the solid-liquid contact area. Jumping of condensate droplets can reduce the droplet distribution density and surface covered fraction,and result in the unevenness of frost layer and difference in frost crystals. Compared with the bare surface,the superhydrophobic surface can effectively restrain the frost formation and delay the growth rate of the frost layer.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第4期757-762,共6页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(51106023) "十二五"国家科技支撑计划资助项目(2011BAJ03B14) 东南大学优秀博士学位论文培育基金资助项目(YBJJ1506)
关键词 超疏水表面 凝结液滴 自跳跃 结霜 superhydrophobic surface condensation droplets jumping behavior frost formation
  • 相关文献

参考文献15

  • 1Zhang P, Lti F Y. A review of the recent advances in superhydrophobic surfaces and the emerging energy-re- lated applications [J]. Energy, 2015, 82: 1068 - 1087. DOI:10. 1016/j. energy. 2015.01. 061.
  • 2He M, Zhang Q, Zeng X, et al. Hierarchical porous surface for efficiently controlling microdroplets' self-re- moval [ J ]. Advanced Materials, 2013, 25 ( 16 ) : 2291 - 2295. DOI: 10. 1002/adma. 201204660.
  • 3Xu L, Karunakaran R G, Guo J, et al. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles [ J ]. ACS Applied Materials and Interfaces, 2012, 4(2) : 1118 - 1125.
  • 4Kietzig A M, Hatzikiriakos S G, Englezos P. Patterned superhydrophobic metallic surfaces [J]. Langmuir, 2009, 25(8) : 4821 -4827.
  • 5Jing T, Kim Y, Lee S, et al. Frosting and defrosting on rigid superhydrohobic surface [ J ]. Applied Surface Science, 2013, 276:37-42.
  • 6Huang L, Liu Z, Liu Y, et al. Preparation and anti- frosting performance of super-hydrophobic surface based on copper foil [J]. International Journal of Thermal Sciences, 2011, 50(4): 432-439.
  • 7丁云飞,殷帅,廖云丹,吴会军.纳微结构疏水表面结霜过程及抑霜特性[J].化工学报,2012,63(10):3213-3219. 被引量:22
  • 8Liu Z, Gou Y, Wang J, et al. Frost formation on a su- per-hydrophobic surface under natural convection condi-tions [ J ]. International Journal of Heat and Mass Transfer, 2008, 51 ( 25 ) : 5975 - 5982. DOI: 10.1016/ j. ijheatmasstransfer. 2008.03. 026.
  • 9Liang C, Wang F, Lu Y, et al. Experimental study of the effects of fin surface characteristics on defrosting be- havior [J]. Applied Thermal Engineering, 2015, 75: 86 - 92. DOI: 10. 1016/j. appltherrnaleng. 2014. 09. 082.
  • 10Wang F, Liang C, Yang M, et al. Effects of surface characteristic on frosting and defrosting behaviors of fin-tube heat exchangers [ J ]. Applied Thermal Engi- neering, 2015, 75:1126 - 1132. DOI:10. 1016/j. ap- plthermaleng. 2014. 10. 090.

二级参考文献18

  • 1宋永吉,任晓光,任绍梅,王虹.水蒸气在超疏水表面上的冷凝传热[J].工程热物理学报,2007,28(1):95-97. 被引量:16
  • 2Barrow H. A note on frosting of heat pump evaporator surfaces[J] Journal of Heat Recovery Systems, 1985, 5 (3): 195-201.
  • 3Laforte J L, Allaire M A, Laflamme J. State-of-the-art on power line de-icing[J] Atmospheric Research, 1998, 46, 143-158.
  • 4Bragg M B, Heinrich D C, Valarezo W O. Effect of under- wing frost on a transport aircraft airfoil at flight Reynolds number [J]. Journal of Aircraft, 1994, 31 (6): 1372- 1378.
  • 5Emery A F, Siegel B L. Experimental measurements of the effects of frost formation on heat exchanger performance// Proceedings of AIAA/ASME Thermophysies and Heat Transfer Conference [ C]. Seattle Washington, 1990, 139, 1-7.
  • 6Piening W. Der warmetibergang an rohren bei freier stromung unter beruchsich tigung derbildung vonschwitzwasser und reif [J]. Gesundheits-Ingenieur, 1933, 56 (21): 493-501.
  • 7Yao Y, Jiang Y Q, Deng S M. A study on the performance of the airside heat exchanger under frosting in an air source heat pump water heater/chiller unit [J]. InternationalJournal of Heat and Mass Transfer, 2004, 47 (17/18) : 3745-3756.
  • 8Cai Liang, Wang Ronghan, Hou Puxiu, Zhang Xiaosong. Study on restraining frost growth at initial stage by hydrophobic coating and hygroscopic coating [J]. Energy and Buildings, 2011, 43:1159-1163.
  • 9Matsumoto K, Daikoku Y. Fundamental study on adhesion of ice to solid snrface discussion on coupling of nano-scale field with macroscale field [J]. International Journal of Refrigeration, 2009, 32 (3): 444-453.
  • 10Wu X M, Webb R L. Investigation of the possibility of frost release from a cold surface [J]. Experimental Thermal and Fluid Science, 2001, 24 (3): 151-156.

共引文献34

同被引文献67

引证文献14

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部