期刊文献+

秀丽隐杆线虫-泛耐药肺炎克雷伯菌感染模型的建立 被引量:3

Establishment of an infection model using Caenorhabditis elegans-extensively drug-resistant Klebsiella pneumoniae
下载PDF
导出
摘要 目的建立泛耐药肺炎克雷伯菌(XDRKP)感染秀丽隐杆线虫感染模型。方法在液体条件下,利用临床分离的XDRKP菌株感染秀丽隐杆线虫,观察线虫存活及体内细菌数量变化情况。结果线虫感染XDRKP后活动明显迟缓,不同浓度的XDRKP对线虫的致死情况不同。log-rank检验显示,1.5×106 CFU/mL XDRKP组与E.coli OP_(50)对照组的生存曲线差异无统计学意义(χ2=0.08,P>0.05);1.5×107、1.5×108 CFU/mL组与E.coli OP_(50)对照组的生存曲线差异均有统计学(χ2值分别为229.37、275.98,均P<0.001),1.5×108与1.5×107 CFU/mL XDRKP组线虫的生存率低于对照组。实验获得上清悬液,经细菌纯培养后进行细菌鉴定和药敏测试,证实为XDRKP。XDRKP感染线虫4、6、12、24 h后,线虫体内细菌总量分别为(0.28±0.02)×105、(0.50±0.38)×105、(1.73±0.56)×105、(2.62±0.53)×105 CFU/mL,不同时间线虫体内细菌总数存在统计学差异(F=1 363.39,P<0.001)。结论成功建立了秀丽隐杆线虫-XDRKP感染模型。 Objective To establish an infection model using Caenorhabditis elegans (C.elegans)-extensively drug-resistant Klebsiella pneumoniae (XDRKP)system.Methods Clinically isolated XDRKP strains were used to infect C.elegans in the liquid killing assay,the nematode survival and the number of bacteria in C.elegans digestive tract was observed.Results C.elegans was significantly retarded after being infected by XDRKP,different concentra-tions of XDRKP led to different patterns of the worm death.Log-rank test showed that survival curves of C. elegans infected with 1 .5×10^6 CFU/mL of XDRKP and E.coli OP50 (control)were not significantly different (χ2 =0.08,P 〉0.05);survival curves of C.elegans infected with 1 .5 ×10^7 CFU/mL,1 .5 ×10^8 CFU/mL of XDRKP and E.coli OP50 were significantly different(χ2 =229.37,275.98,respectively,both P 〈0.001).The survival rates of 1 .5×10^8 and 1 .5 ×10^7 CFU/mL XDRKP groups were both lower than that of the control group.Supernatant suspension obtained from test was performed bacterial culture,identification and antimicrobial susceptibility testing, XDRKP was determined.After being infected with XDRKP 4,6,12,and 24 hours,the total number of bacteria in C.elegans were(0.28±0.02)×10^5 CFU/mL,(0.50 ±0.38)×10^5 CFU/mL,(1 .73 ±0.56)×10^5 CFU/mL,and (2.62±0.53)×10^5 CFU/mL,respectively,the number of bacteria in C.elegans digestive tract was significantly different at different time points (F =1 363.39,P 〈0.001).Conclusion The infection model of C.elegans-XDRKP is established successfully.
出处 《中国感染控制杂志》 CAS 北大核心 2016年第7期457-460,共4页 Chinese Journal of Infection Control
基金 2010年度院长基金(2010C001)
关键词 秀丽隐杆线虫 泛耐药 肺炎克雷伯菌 感染 模型 Caenorhabditis elegans extensively drug resistance Klebsiella pneumoniae infection model
  • 相关文献

参考文献10

  • 1胡付品,朱德妹,汪复,蒋晓飞,徐英春,张小江,张朝霞,季萍,谢轶,康梅,王传清,王爱敏,徐元宏,沈继录,孙自镛,陈中举,倪语星,孙景勇,褚云卓,田素飞,胡志东,李金,俞云松,林洁,单斌,杜艳,韩艳秋,郭素芳,魏莲花,吴玲,张泓,孔菁,胡云建,艾效曼,卓超,苏丹虹.2014年CHINET中国细菌耐药性监测[J].中国感染与化疗杂志,2015,15(5):401-410. 被引量:727
  • 2van Duin D, Kaye KS, Neuner EA, et al. Carbapenem resistant Enterobaeteriaeeae: a review of treatment and out comes[J]. Diagn Microbiol Infect Dis, 2013, 75(2): 115- 120.
  • 3Sifri CD, Begun J, Ausubel FM. The worm has turned-micro bial virulence modeled in Caenorhabditis elegans [J]. Trends Microbiol, 2005, 13(3) :119- 127.
  • 4Clinical and Laboratory Standards Institute. Performance standard for antimicrobial susceptibility testing: twenty-fifth informational supplement [S]. CLSI document, M100-S25, 2015.
  • 5Stiernagle T. Maintenance of C. elegans[J]. WormBook, 2006,2 (11):1-11.
  • 6Garsin DA, Sifri CD, Mylonakis E, et al. A simple model host for identifying Gram positive virulence factors[J]. Proc Natl Acad SciUSA, 2001,98 (19): 10892-10897.
  • 7郭欣欣,于新惠,张颖,罗勤.单核细胞增生李斯特菌对秀丽隐杆线虫致病性的研究[J].微生物学杂志,2015,35(4):7-12. 被引量:3
  • 8周雨朦,陈代杰,李继安,邵雷,朱春宝.秀丽隐杆线虫-耐药铜绿假单胞菌感染模型的建立[J].中国抗生素杂志,2011,36(7):511-514. 被引量:9
  • 9施慧,孙帆,刘仲仲,张克勤,黄晓玮.解淀粉芽孢杆菌杀线虫活性高效筛选模型的建立及应用[J].微生物学报,2014,54(5):589-594. 被引量:4
  • 10Liu J, Hafting J, Critchley AT, et al. Components of the cul- tivated red seaweed Chondrus crispus enhance the immune re sponse of Caenorhabditis elegans to Pseudomonas aeruginosa through the pink-l, daf-2/daf-16, and skn-1 pathways [J]. Appl Environ Microbiol, 2013,79(23) :7343 - 7350.

二级参考文献36

  • 1苏丹虹,阜超,袁锦屏.2005年临床常见细菌附药性监测分析.第八届全国抗菌约物临床约药理学术会议.北京,2006.
  • 2Moy T I, Ball A R, Anklesaria Z, et al. Identification of novel antimicrobials using a live-animal infection model[J]. Proc Natl Acad Sci USA, 2006, 103(27): 10414-10419.
  • 3Breger J, Fuchs B B, Aperis G, etal. AntifungaJ chemical compounds identified using a C. elegans pathogenicity assay[J]. PLoS Pathog, 2007, 3(2): 168-178.
  • 4Brenner S. The genetics of Caenorhabditis elegans[J]. Genetics, 1974, 77(1): 71-94.
  • 5Lewis J A, Fleming J T. Basic culture methods[J]. Methods' Cell Biol, 1995, 48: 3-29.
  • 6Beanan M J, Strome S, Characterization of a germ-line proliferation mutation in C. elegans[J]. Development, 1992, 116: 755-766.
  • 7Kim D H, Feinbaum R, Alloing G, et al. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity[J]. Science, 2002, 297(5581): 623-626.
  • 8Tan M W, Mahajan-Miklos S, Ausubel F M. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis[J]. Proc Natl Acad Sci USA, 1999, 96(2): 715-720.
  • 9Stiernagle T. Maintenance of C. elegans[J]. WormBook, 2006: 1-11.
  • 10Clinical and Laboratory Standards lnstitute/NCCLS. Performance Standards for Antimicrobial Susceptibility Testing; Nineteenth Informational Supplement[S]. Wayne,PA: CLSI, 2009.

共引文献739

同被引文献26

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部