期刊文献+

量子系统C^2C^4中无偏的最大纠缠基 被引量:1

Mutually Unbiased Maximally Entangled Bases in Quantum System C^2C^4
下载PDF
导出
摘要 为了研究在量子计算和量子信息数据处理中起着重要作用的无偏基,首先研究了两体空间C^2C^4上的最大纠缠基,并利用C^2C^4空间的特点,根据无偏基和酉矩阵的性质,给出了在C^2C^4系统构造无偏基的一般方法 .最后由此方法构造了C^2C^4空间两两无偏的3组无偏基. To study mutually unbiased bases which play important roles in quantum computation and quantum information processing, the maximally entangled bases in the bipartite quantum system C2 C4 are studied firstly. Secondly, using the characteristics of C2 C4, and according to the properties of mutually unbiased basis and unitary matrix, a general method of constructing a pair of mutually unbiased maximally entangled bases in C2 C4 is presented. Finally, three maximally entangled bases which are mutually unbiased are constructed by the method.
机构地区 延边大学理学院
出处 《哈尔滨理工大学学报》 CAS 北大核心 2016年第3期121-124,共4页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金(11361065) 吉林省自然科学基金(201215239) 延边大学科技发展项目(延大科合字[2013]第17号)
关键词 最大纠缠态 无偏基 酉矩阵 maximally entangled bases mutually unbiased bases unitary matrix
  • 相关文献

参考文献20

  • 1ADAMSON D B A, STEINBERG A M. Improving Quantum State Estimation with Mutually Unbiased Bases [ J ]. Phys. Rev. Lett, 2010, 105: 030406.
  • 2FERNANDEZ-PEREZ A, KLIMOV A B, SAAVEDRA, Quantum Process Reconstruction Based on Mutually Unbiased Basis [ J]. Phys. Rev. A, 2011, 83 : 052332.
  • 3SCHWINGER J. Unitary Operator Bases [ J ]. Proc. Nat. Acad. Sci. ,U. S. A. ,1960,46(4) :570 -579.
  • 4REHACEK J, ENGLERT B G, KASZLIKOWSKI D. Minimal Qu-bit Tomography[J]. Phys. Bey. A, 2004, 70:052321 -052333.
  • 5WOOTYERS W K, FIELDS B D. Optimal State-determination by Mutually Unbiased Measurements[ J]. Ann. Phys. (NY), 1989, 191(2) : 363 -381.
  • 6BRIEBLEY S, WEIGEBT S, BENGTSSON I. All Mutually Unbi- ased Bases in Dimension Two to Five [ J ]. Quantum InfornL Com- put, 2010, 10(10) : 803-820.
  • 7MCNULTY D, WEIGERT S. The Limited Role of Mutually Unbi- ased Product Bases in Dimension 6 [ J ]. J. Phys. A : Math. The- or, 2012, 45(10) : 102001.
  • 8WIESNIAK M, PATEREK T, ZEILINGER A. Entanglement in Mutually Unbiased Bases[J]. New J. Phys. , 2011, 13: 053047.
  • 9ISHIZAKA S, HIROSHIMA T. Quantum Teleportation Scheme by Selecting One of Multiple Output Ports [ J ]. Phys. Rev. A. , 2009, 79(4) : 042306.
  • 10李嫦娥,杨光,陶元红,罗来珍,雷强.迹范数和Frobenius范数下的量子态可分判据[J].哈尔滨理工大学学报,2013,18(3):86-90. 被引量:2

二级参考文献31

  • 1程其襄,张奠宙,魏国强等.实变函数与泛函分析基础[M].北京:高等教育出版社,2005:241-243.
  • 2NIESEN M. A. , CHUANG I. L. Quantum Computation and Quan- tum Information [ M ]. London: Cambridge University Press, 2000.
  • 3TAO Yuanhong, ZHENG Juhua. Probabilistic Controlled Telepor- tation of Two-particle Entangled State via the Optimal Quantum State[ J]. International Journal of Theoretical Physics, 2012,10 : 30 - 35.
  • 4WERNER R F. Quantum States Einstein-Podolsk-Rosen Correla- tions Admitting a Hidden-variable Model [ J ]. Phys. Rev. A, 1989, 40(8) : 4277 -4281.
  • 5PERES M. Separability Criterion for Density Matrices [ J ]. Phys.Rev. Lett, 1996, 77(8) : 1413.
  • 6RUDOLPH O. Some Properties of the Computable Cross-norm Cri- teflon for Separability[J]. Phys. Rev. A, 2003, 67(3) : 1 -6.
  • 7CHEN K, WU L A. A Matrix Realignment Method for Recognizing Entanglement [ J ]. Quant. Inf. Comput. 2003, 3 ( 3 ) : 193 - 202.
  • 8CHEN K, WU L A. The Generalized Partial Transposition Criteri- on for Separability of Muhipartite Quantum States[ J]. Phys. Rev. A. 2002, 306(1) : 14 -20.
  • 9CHEN K, WU L A. Detection of Entanglement and Bell' s Ine- quality Violation[ J ]. arXiv : quant-ph/2003 ,20 :60 - 62.
  • 10LI Ming, FEI Shaoming, WANG Zhixi. Separability and Entan- glement of Quantum States Based on Covariance Matrices [ J ]. J. Phys. A. : Math Theor, 2008, 41 : 358 -367.

共引文献3

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部