期刊文献+

汽车自适应巡航线性参变间距控制算法 被引量:5

Design of linear parametrically varying headway control algorithm for ACC vehicles
下载PDF
导出
摘要 为满足驾驶员对汽车自适应巡航控制系统的个性化安全车间距设计的需求,采用H∞理论设计了线性参变间距控制算法。考虑到驾驶员自主设定车头时距带来的控制系统动态不确定性问题,采用线性参变模型描述本车与前车间的相对运动学特性,并通过加速度限值抑制了控制输入饱和且改善了乘坐舒适性。基于H∞控制理论并根据时距动态变化实现了对控制器参数的实时调整和汽车纵向动力学的非线性控制。典型仿真工况及其与动态面控制算法的性能对比性分析表明,本文算法可实现驾驶员对车头时距的个性化设定,同时也避免了时距和车辆状态离散变化甚至跳变带来的瞬态跟随性能恶化。 An individual linear parametrically varying headway control algorithm is designed based on H∞ concept for Adaptive Cruise Control(ACC)systems.The relative kinematics between the host vehicle and the preceding vehicle is represented using a linear parametrically varying model considering the uncertainty owing to the time gap set by drivers dynamically.The longitudinal acceleration is restrained under control input saturation and the passenger comfort is improved。Furthermore,the controller gains are tuned in real time according to the dynamic time gap based on H∞ concept and the nonlinear longitudinal dynamics controller is designed.Finally,the designed algorithm is validated under a typical condition and compared with the existing Dynamic Surface Controller(DSC).The results show that the individual setting of the time gap is achieved via the linear parametrically varying headway control algorithm,the deterioration of transient following performance for the sake ofdiscrete variation of the time gap and automotive states is avoided.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第4期1023-1029,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 吉林省科技引导计划项目(20130413058GH) 上海市科学技术委员会项目(13QB1402300) 高等学校博士学科点专项科研基金项目(20120061110028)
关键词 车辆工程 自适应巡航控制 车头时距模型 线性参变间距控制 控制输入饱和 驾驶员 vehicle engineering adaptive cruise control constant time headway model linear parametrically varying headway control control input saturation driver
  • 相关文献

参考文献13

  • 1Rajamani R. Vehicle Dynamics and Control[M]. New York: Springer, 2012:141-170.
  • 2Vibhor L, William B, Garrard L, et al. Model pre- dictive control of transitional maneuvers for adaptive cruise control vehicles[J]. IEEE Transactions on Vehicular Technology, 2004, 53(5) : 1573-1585.
  • 3Morag D. Operating policies for personal rapid tran- sit[R]. U.S. :DOT Urban Mass Transit Adminis- tration, 1974.
  • 4Yi K, Moon I, Kwon Y. A vehicle-to-vehicle dis- tance control algorithm for stop-and-go cruise con- trol[C]//IEEE Intelligent Transportation Systems Conference, Oakland, USA, 2001 : 478-482.
  • 5Zhou J, Peng H. Range policy of adaptive cruise control vehicles for improved flow stability and string stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(2) : 229-237.
  • 6Bifulco G L, Pariota L, Simonelli F, et al. Develop- ment and testing of a fully adaptive cruise control system[J]. Transportation Research Part C, 2013, 29: 156-170.
  • 7Back W, Song B. Design and validation of a longitu- dinal velocity and distance controller via hardware in-the-loop simulation[J]. International Journal ofAutomotive Technology, 2009, 10(1) : 95-102.
  • 8Mohammadpour J, Scherer C W. Control of Linear Parameter Varying Systems with Applications[M]. New York: Springer, 2012.
  • 9Olivier S, Peter G, Jozsef B. Robust Control and Linear Parameter Varying Approaches: Application to Vehicle Dynamics[M]. Berlin: Springer, 2013.
  • 10Li S E, Li K, Wang J. Economy-oriented vehicle a- daptive cruise control with coordinating multiple ob- jectives function [J]. Vehicle System Dynamics, 2013,59(1) : 1-17.

同被引文献22

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部