期刊文献+

基于状态观测器的机敏约束阻尼板模态控制 被引量:2

Modal control of smart constrained layer damping plate based on state observer
下载PDF
导出
摘要 以对边约束板结构为研究对象,研究了压电机敏约束阻尼技术的振动主动控制问题。基于压电本构关系、GHM阻尼模型和模态理论建立了模态主动控制模型。考虑到模态坐标在工程实际中无法由物理传感器直接测量,基于分离定理进行了模态状态观测器设计,并结合非耦合模态控制法与最优二次型控制进行了振动主动控制器设计。搭建了硬件在环实验平台,在不同外扰激励下开展了振动主动控制实验研究。结果表明,采用带有观测器的模态控制器,对板结构的振动主动控制能取得很好效果:当外界激励为复杂周期信号时,振动响应幅值衰减近60%;当外界激励为随机白噪声时,振动响应的均方根值减少9.48%。 The vibration active control of piezoelectric smart constrained layer damping technology was researched with a clamped-clamped plate structure.The modal active control model was established based on piezoelectric constitutive relation,GHM damping model and modal theory.The modal state observer was designed based on separation theorem since the modal coordinates can not be directly acquired by physical sensor in engineering practice.An active vibration controller was also designed using non-coupling modal control and quadratic optimal control.Experiments of hardware in the loop and active vibration control were carried out under different external disturbance excitations.Results show that,using modal controller with an observer,good effect of active control of the plate vibration can be obtained.When the external excitation is complicated periodic signal,the vibration response amplitude attenuates to nearly 60%.When the external excitation is random white noise,the root mean square value of the vibration response reduces by 9.48%.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第4期1057-1064,共8页 Journal of Jilin University:Engineering and Technology Edition
基金 '863'国家高技术研究发展计划项目(2012AA111803) 中央高校基本科研业务费专项资金项目(CDJZR12110006)
关键词 车辆工程 机敏约束层阻尼 振动主动控制 模态控制 状态观测器 vehicle engineering smart constrained layer damping active vibration control modal control state observer
  • 相关文献

参考文献22

  • 1Khalfi B, Rose A. Influence of partial constrained layer damping on the bending wave propagation in an impacted viscoelastic sandwich [J]. International Journal of Solids and Structures, 2013, 50(25-26): 4133-4144.
  • 2Ansari M, Khajepour A, Esmailzadeh E. Applica tion of level set method to optimal vibration control of plate structures[J]. Journal of Sound and Vibra- tion, 2013, 332(4):687-700.
  • 3Wu D, Liang I,, Bing P, et al. Experimental study and numerical simulation of active vibration control of a highly flexible beam using l.)iezoefectric [J ]. Aerospace Science and Technology, 2014, 37: 10- 19.
  • 4Kumar R S, Ray M (7. Active control of geometri- cally nonlinear vibrations of doubly curved smart sandwich shells using 1-3 piezoelectric composites [J]. Composite Structures, 2013, 105: 173-187.
  • 5Vasques C, Moreira R, Rodrigues J D. Viscuclastic damping technologies-part ment implementation [J ]. I : modeling and finite ele Journal of Advanced Rcsearch in Mechanical Engineering, 2010, 1 (2) : 96- 110.
  • 6Kumar N, Singh S P. Vibration and damping char- acteristics of beams with active constrained layer treatments under parametric variations[J]. Materi- als and Design, 2009, 30(10): 4162-4174.
  • 7Cao Y, Deng Z, Wang P. A mechanics model and active control for smart constrained layer damping structure [J]. Applied Mechanics and Materials, 2012,184-185: 767-773.
  • 8Kumar N, Singh S P. Vibration control of curved panel using smart damping[J]. Mechanical Systems and Signal Processing, 2012, 30: 232-247.
  • 9郑玲,王宜,谢熔炉.主动约束层阻尼结构的振动控制[J].重庆大学学报(自然科学版),2010,33(2):1-7. 被引量:11
  • 10Liu T, Hua H, Zhang Z. Robust control of plate vi- bration via active constrained layer damping[J]. Thin-walled Structures, 2004, 42(3): 427-448.

二级参考文献30

  • 1RAO M D. Recent applications of viscoelastic dampingfor noise control in automobiles and commercial airplanes [J]. Journal of Sound and Vibration , 2003, 262(3) : 457-474.
  • 2VASQUES C M A, RODRIGUES J D. Combined feedback/feed forward active control of vibration of beams with ACLD treatments: Numerical simulation [J]. Computers and Structures, 2008, 86 (3/5) 292- 306.
  • 3KUMAR N, SINGH S P. Vibration and damping characteristics of beams with active constrained layer treatments under parametric variations [J]. Materials and Design,2009,30(10) :4162 -4174.
  • 4RAY M C, SHIVAKUMAR M C. Active constrained layer damping of geometrically nonlinear transient vibrations of composite plates using piezoelectric fiberreinforced composite[J]. Thin Walled Structures 2009, 47(2) :178-189.
  • 5GANDHI F, MUNSKY B. Comparison of damping augmentation mechanisms with position and velocity feedback in active constrained layer Treatments[J].Journal of Intelligent Material Systems and structures. 2002, 13(5) :317-326.
  • 6DAMAREN C J, OGUAMANAM D C D. Vibration control of spacecraft box structures using collocated piezo-actuator /sensor [J]. Journal of Intelligent Material Systems and Structures, 2004, 15 ( 5 ): 369-374.
  • 7BADRE-ALAM A, WANG K W, GANDHI F. Optimization of enhanced active constrained layer treatment on helicopter flex-beams for aeromechanical stability augmentation [J]. Journal of Smart Materials and Structures, 1999(8): 182-196.
  • 8HERDIC P, BAZ A, HOUSTON R. Structural acoustics and active constrained layer damping of a full scale fuselage section: An experimental approach[C]// International ASME Congress, November 16 21, 1997, Dallas, TX. NCA, 1997:43-54.
  • 9KWAK S K, WASHINGTON G, YEDARAI.LI R. Active and passive vibration control of landing gear components [C]// The 1999 ASME Mechanical Engineering Congress and Exposition ( IMECE'99), November 14- 19, 1999, Nashville, Tennessee, USA. Nashville, Tennessee: [s. n.], 1999:269- 275.
  • 10LAM M J, SAUNDERSW R. Vibration control through passive constrained layer and active control [ J]. Journal of Intelligent Material Systems and Structures, 1996, 8(8): 663 -677.

共引文献35

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部