期刊文献+

基于层次过滤模型的中文指代消解 被引量:6

Chinese anaphora resolution based on multi-pass sieve model
下载PDF
导出
摘要 针对现有的中文指代消解研究大多采用二元分类模型,容易出现消解正确率低的特征覆盖消解正确率高的特征以致模型指代划分错误的问题,提出了一种改进的层次过滤模型用于中文指代消解。该模型结合中文语义知识,在原模型中加入语义匹配层,该层通过引入Web语义知识很好地弥补了中文语义知识库较小的不足,并针对中文的特点对原模型的待消解项识别层进行相应的修改使之更加适合中文指代消解。将上述模型与两类基准系统在ACE2005中文语料上进行5种测评,结果表明,所提出模型的F平均值分别高于两类基准系统约4%和9%。 Most existing Chinese anaphora resolution models determine whether two mentions are coreferent by a binary classifier.This approach can lead to incorrect decisions as lower precision features often overwhelm the precision features.We propose a modified multi-pass sieve model for Chinese anaphora resolution to adapt to Chinese.We add a new semantic-based sieve to the original model for incorporating word sense information.The Web word sense information is imported to solve resource constraints.Furthermore,we modify the mention detection sieve based on the Chinese characters.The proposed model is evaluated on five different testing methods on the ACE2005 corpus.Results show that the proposed model outperforms two other baseline models by 4% and 9%respectively.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第4期1209-1215,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61272274) 国家自然科学青年基金项目(61402340) 湖北省自然科学青年基金项目(2014CFB194)
关键词 人工智能 层次过滤模型 语义知识 指代消解 自然语言处理 artificial intelligence multi-pass sieve model semantic information anaphora resolution natural language processing
  • 相关文献

参考文献15

  • 1Hardmeier C,Federico M. Modelling pronominal a- naphora in statistical machine translation[C]//Pro- ceedings of the International Workshop on Spoken Language Translation, Paris, 2010 : 283-289.
  • 2Doddington G, Mitchell A, Przybocki M. The auto- matic content extraction (ACE) program-tasks, da- ta, and evaluation [DB/OL]. http: //www. comp. nus. edu. sg/rpnlpir/proceedings/lrec-2004/pdf/. pdf, 2012-05-11.
  • 3Witte R, Krestel R, Bergler S. Context based mult- idoeument summarization using fuzzy coreference cluster graphs[DB/OL], http:///www, nlpir, nist. gov/projects/duc/pubs/2006, papers/20, final, pdf, 2012-05-06.
  • 4SoonWM, Ng H T, LimDCY. A machine lear-ning approach to coreference resolution of noun phr- ases[J]. Computational Linguistics, 2001 (4) : 521- 544.
  • 5Raghunathan K, Lee H, Rangarajan S. A multipass sieve for coreference resolution [ C ]// Massa-chu- setts, MIT, 2010:492-501.
  • 6Lee H, Peirsman Y, Chang A, et al. Stanford's multi-pass sieve coreferenee resolution system at the CoNLL-2011 shared task[C]//In Proceedings of the Fifteenth Conference on Computational Natural Lan- guage Learning : Shared Task, Oregon, 2011 : 28-34.
  • 7Zhang Xiao-tian, Wu Chun-yang, Zhao HaL Chi- nese coreference resolution via ordered filtering[C] //In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning: Shared Task, Jeju, 2012 : 95-99.
  • 8孔芳,朱巧明,周国栋.中英文指代消解中待消解项识别的研究[J].计算机研究与发展,2012,49(5):1072-1085. 被引量:14
  • 9刘群,李素建.基于《知网》的词汇语义相似度计算[EB/OL].[2015-02-14]http://www.keenage.com,2013.
  • 10Cilibrasi R L, Vitanyi P M. The google similarity distance[J]. IEEE Transactions on Knowledge and Data Engineering,2007, 19(3): 370-383.

二级参考文献29

  • 1李国臣,罗云飞.采用优先选择策略的中文人称代词的指代消解[J].中文信息学报,2005,19(4):24-30. 被引量:33
  • 2Soon W M,Ng H T,Lim D. A machine learning approach to coreference resolution of noun phrase[J].Computational Linguistics,2001,(04):521-544.doi:10.1162/089120101753342653.
  • 3Ng V,Cardie C. Improving machine learning approaches to coreference resolution[A].Philadelphia:Association for Computational Linguistics,2002.104-111.
  • 4Yang X F,Su J,Zhou G D. Improving pronoun resolution by incorporating coreferential information of candidates[A].Stroudsburg,USA:Association for Computational Linguistics,2004.127-134.
  • 5Bergsma S,Lin D K. Bootstrapping path-based pronoun resolution[A].Stroudsburg,USA:Association for Computational Linguistics,2006.33-40.
  • 6Stoyanov V,Gilbert N,Cardie C. Conundrums in noun phrase coreference resolution: Making sense of the state-of-the-art[A].Stroudsburg,USA:Association for Computational Linguistics,2009.656-664.
  • 7Bergsma S,Lin D,Gocbcl R. Distributional identification of non referential pronouns[A].Stroudsburg,USA:Association for Computational Linguistics,2008.10-18.
  • 8Bean D,Riloff E. Corpus-based identification of non-anaphoric noun phrases[A].Stroudsburg,USA:Association for Computational Linguistics,1999.373-380.
  • 9Lappin S,Herbert J L. An algorithm for pronominal anaphora resolution[J].Computational Linguistics,1994,(04):535-561.
  • 10Ng V,Cardie C. Identify anaphoric and non-anaphoric noun phrases to improve coreference resolution[A].Sun Francisco:Morgan Kaufmann,2002.976-984.

共引文献13

同被引文献42

引证文献6

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部