期刊文献+

基于星载混合相控阵MIMOSAR的多方向测绘带成像及二维DBF处理

Multi-direction swath imaging and two-dimensional digital beamforming based on space-born hybrid phased-MIMO SAR
下载PDF
导出
摘要 为解决图像模糊和图像混叠的问题,提出了将混合相控阵MIMO雷达与SAR相结合(混合相控阵MIMO SAR)的多方向测绘带成像方法,且提出二维数字波束合成(DBF)处理技术以实现无模糊宽测绘带高分辨率成像。首先建立该方法信号模型,推导了混合相控阵MIMO SAR的实际控制矩阵。然后针对多方向成像易造成图像混叠和距离模糊的不足,提出俯仰向自适应DBF算法,实现了图像混叠部分的有效分离且对模糊有很好的抑制。最后利用方位向加权对带外模糊置零。仿真结果表明该二维DBF处理技术的有效性。与星载双向和相控阵多向成像方法相比,该方法工作方式更灵活,能够满足多功能星载SAR的要求。 An imaging method of multi-direction swath based on space-born hybrid phased-MIMO SAR is proposed,which combines traditional phased-array radar with a new technique for multiple-input multiple-output(MIMO)radar,and the 2-D DBF for this system is presented to achieve unambiguous wide swath imaging with high azimuth resolution.Firstly,the signal model was built and the virtual control matrix of the Hybrid Phased-MIMO SAR was derived.Secondly,considering the image overlap and range ambiguity caused by multiple direction imaging,the adaptive Digital Beamforming(DBF)algorithm in range was proposed to separate the overlap area in images and to suppress the ambiguity.Finally,azimuth ambiguity that exceeds the signal bandwidth is suppressed by weighting in azimuth.Simulation results validate the effectiveness of this 2-D processing.Compared with space-born bi-direction SAR by two major lobes and multi-direction SAR by phased array,operation mode will be more flexible by using our method,and satisfy requests of multifunctional space-born SAR.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第4期1344-1353,共10页 Journal of Jilin University:Engineering and Technology Edition
基金 国防装备预研项目(40405050302) 装备预研基金项目(9140A17010213Bq03003)
关键词 信息处理技术 星载混合相控阵MIMO SAR 信号模型 二维DBF 图像混叠 图像模糊 information processing space-born phased-MIMO SAR signal model 2-D BDF image overlap image ambiguity
  • 相关文献

参考文献19

  • 1Gebert N, Krieger G, Moreira A. Multichannel azi- muth processing in ScanSAR and TOPS mode opera- tion[J]. IEEE Transactions on Geoscience and Re- mote Sensing, 2010, 48(7) :2994-3008.
  • 2Gao Can-guan,Wang R,Deng Yun-kai, et al. Large- scene sliding spotlight SAR using multiple channels in azimuth[J]. IEEE Geoscience and Remote Sens- ing I.etters, 2013, 10(5) :1006-1010.
  • 3Henke D, Magnard C, Frioud M, et al. Moving- target tracking in single-channel wide-beam SAR [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11) :4735 -4747.
  • 4Wolisiadt S, Prals-Iraola P, l.opez-Dekker P, el al. Bidirectional SAR imaging mode[J]. IEEE Transac- tions on Geoscienee and Remote Sensing, 2013, 51 (1):601-614.
  • 5Ender J H G, Brenner A R. PAMIR a wideband phased array SAR/MTI system[J], lEE Proceed- ings Radar, Sonar and Navigation, 2003, 150(3): 165-172.
  • 6Wang Wen-qin. MIMO SAR ()FDM chirp waveformdiversity design with random matrix modulation[J]. IEEE Transactions on Geoscience and Remote Sens- ing, 2015, 53(3):1615-1625.
  • 7Kim J H, Younis M, Prats-lraola P, et al. First spaceborne demonstration of digital beamforming for azimuth ambiguity suppression[J]. IEEE Transac- tions on Geoscience and Remote Sensing, 2013, 51 (1) :1-11.
  • 8Krieger G, Gebert N, Moreira A. Multidimensional waveform encoding: a new digital heamforming technique for synthetic aperture radar remote sens- ing[J]. IEEE Transactions on Geoseience and Re- mote Sensing, 2008, 46(1):31-46.
  • 9Feng Fan, Li Shi-qiang, Yu Wei-dong,et al. Study on the processing scheme for space-time waveform encoding SAR system based on two-dimensional dig- ital beamforming[J]. IEEE Transactions on Geosci- ence and Remote Sensing, 2012, 50 (3):910-932.
  • 10Hassanien A, Vorobyov S A. Phased-MIMO radar: a tradeoff between phased-array and MIMO radars [J]. IEEE Transactions on Signal Processing, 2010, 58(6) :1-33.

二级参考文献16

  • 1齐维孔,禹卫东.一种新的多极化星载SAR工作方式研究[J].中国科学:信息科学,2010,40(10):1394-1408. 被引量:2
  • 2Cai A M, Shao Y, and Gong H Z. Parameters extraction of crop based on PolSAR data [C]. Proceedings of International Image Analysis and Signal Processing Conference, Zhejiang,China, 2010: 12-15.
  • 3Xu M S, Zhang F L, et al.. Forest type discrimination using polarimetric RADARSAT-2 data[C]. Proceedings of International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009: 601-604.
  • 4Liu T, Lampropoulos G, and Fei C H. CFAR ship detection using polarimetric data [C]. Proceedings of IEEE Radar Conference, Rome, Italy, 2008: 1-4.
  • 5Hajnsek I, et al.. Tropical-forest-parameter estimation by means of Pol-InSAR: the INDREX-II campaign [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 481-493.
  • 6Chen Hao, et al.. Topographic relief compensation on spaceborne polarimetric SAR for forest applications [C]. Proceedings of IEEE Radar Conference, Bordeaux, France, 2009: 1-4.
  • 7Margarit G, Mallorqui J J, and Pipia L. Polarimetric characterization and temporal stability analysis of urban target scattering [J]. IEEE Transactions on Gcoscience and Remote Sensing, 2010, 48(4): 2038-2048.
  • 8Moreira A and Krieger G. Spaceborne synthetic aperture radar: state of the art and future developments [C]. Euro Microwave Conference, Munich, Germany, 2003: 104-111.
  • 9Sato M, Watanabe M, and Iribe K. Polarimetric SAR observation by ALOS[C]. Proceedings of Asia-Pacific Microwave Conference, Bangkok, Thailand, 2007: 1-4.
  • 10Werninghaus R and Buckreuss S. The TerraSAR-X mission and system design [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 606-614.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部