摘要
A Fourier optics approach can be a concise and powerful tool to solve problems in atom optics. In this report, we adopt it to investigate the kinetic behavior of cold atoms passing through a far red-detuned Gaussian beam. We demonstrate that the aberration has significant influence on the evolution of the atomic cloud, which is rooted in the deviation of the Gaussian profile from the quadratic form. In particular, we observe an intriguing effect analogous to Fresnel's double prism with cold atoms, The experimental results are in good agreement with the numerical simulation.
A Fourier optics approach can be a concise and powerful tool to solve problems in atom optics. In this report, we adopt it to investigate the kinetic behavior of cold atoms passing through a far red-detuned Gaussian beam. We demonstrate that the aberration has significant influence on the evolution of the atomic cloud, which is rooted in the deviation of the Gaussian profile from the quadratic form. In particular, we observe an intriguing effect analogous to Fresnel's double prism with cold atoms, The experimental results are in good agreement with the numerical simulation.
基金
supported by the National Natural Science Foundation of China under Grant Nos.10804115 and 91336103
the support by the National Natural Science Foundation of China(No.11104292)