期刊文献+

External quantum efficiency-enhanced Pt Si Schottky-barrier detector utilizing plasmonic ZnO:Al nanoparticles and subwavelength gratings 被引量:1

External quantum efficiency-enhanced Pt Si Schottky-barrier detector utilizing plasmonic ZnO:Al nanoparticles and subwavelength gratings
原文传递
导出
摘要 A infrared light trapping structure combining front subwavelength gratings and rear ZnO:Al nanoparticles for a PtSi Schottky-barrier detector over a 3-5 μm waveband is theoretically investigated. By selecting the proper plasmonic material and optimizing the parameters for the proposed structure, the absorption of the PtSi layer is dramatically improved. The theoretical results show that this improvement eventually translates into an equivalent external quantum efficiency (EQE) enhancement of 2.46 times at 3-3.6 μm and 2.38 times at 3.6-5 μm compared to conventional structures. This improvement in the EQE mainly lies in the increase of light path lengths witifin the PtSi layer by the subwavelength grating diffraction and nanoparticle-scattering effects. A infrared light trapping structure combining front subwavelength gratings and rear ZnO:Al nanoparticles for a PtSi Schottky-barrier detector over a 3-5 μm waveband is theoretically investigated. By selecting the proper plasmonic material and optimizing the parameters for the proposed structure, the absorption of the PtSi layer is dramatically improved. The theoretical results show that this improvement eventually translates into an equivalent external quantum efficiency (EQE) enhancement of 2.46 times at 3-3.6 μm and 2.38 times at 3.6-5 μm compared to conventional structures. This improvement in the EQE mainly lies in the increase of light path lengths witifin the PtSi layer by the subwavelength grating diffraction and nanoparticle-scattering effects.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2016年第7期14-18,共5页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China(No.61471044) the Advanced Research Foundation of China(No.9140A02010114BQ01)
  • 相关文献

参考文献38

  • 1C. Scales and P. Berini, IEEE J. Quantum Electron. 46, 633 (2010).
  • 2E. Roca, K. K. Larsen, S. Kolodinski, and R. Mertens, Appl. Phys. Lett. 67, 1372 (1995).
  • 3K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, IEEE J. Quantum Electron. 27, 2025 (1991).
  • 4M. Arnold, D. Zimin, and H. Zogg, Appl. Phys. Lett. 87, 141103 (200.5).
  • 5M. Malekmohammad, R. Asadi, M. Zahedinejad, M. Khaje, S. Bagheri, A. Erfaniyan, M. Soltanolkotabi, M. H. Naderi, and F. Raissi, IEEE Sens. J. 14, 4055 (2014).
  • 6F. Raissi, IEEE Trans. Electron Devices 50, 1134 (2003).
  • 7H. Mehrara, A. Erfanian, M. Khaje, M. Zahedinejad, F. Raissi, and F. Rezvani, Sens. Actuators A: Phys. 184, 119 (2012).
  • 8M. Steglich, M. Zilk, A. Bingel, C. Patzig, T. Kasebier, F. Schrempel, E.-B. Kley, and A. Tunnermann, J. Appl. Phys. 114, 183102 (2013).
  • 9F. L. Gonzalez and M. J. Gordon, Opt. Lett. 40, 1512 (2015).
  • 10F. Lora Gonzalez, L. Chan, A. Berry, D. E. Morse, and M. J. Gordon, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron.: Mater. Process. Meas. Phenom. 32, 051213 (2014).

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部