期刊文献+

Vacuum-sealed miniature modulated x-ray source and the influence factors of x-ray intensity

Vacuum-sealed miniature modulated x-ray source and the influence factors of x-ray intensity
原文传递
导出
摘要 The vacuum-sealed miniature modulated x-ray source (VMMXS) with a hot cathode is fabricated via the single- step brazing process in a vacuum furnace. An experiment following the VMMXS is implemented to present its performances, including the influence of grid electrode potential on x-ray intensities. The modulation type of the grid electrode as a switch is proposed, and its feasibility is successfully demonstrated. It is noteworthy to discover a phenomenon for the first time, to the best of our knowledge, that the high repetition frequency grid pulse of the VMMXS has a significant effect on the x-ray intensity. The probable cause for this new finding is analyzed. The vacuum-sealed miniature modulated x-ray source (VMMXS) with a hot cathode is fabricated via the single- step brazing process in a vacuum furnace. An experiment following the VMMXS is implemented to present its performances, including the influence of grid electrode potential on x-ray intensities. The modulation type of the grid electrode as a switch is proposed, and its feasibility is successfully demonstrated. It is noteworthy to discover a phenomenon for the first time, to the best of our knowledge, that the high repetition frequency grid pulse of the VMMXS has a significant effect on the x-ray intensity. The probable cause for this new finding is analyzed.
作者 李保权 牟欢
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2016年第7期107-110,共4页 中国光学快报(英文版)
  • 相关文献

参考文献18

  • 1Z. Liu, G. Yang, Y. Z. Lee, D. Bordelon, J. Lu, and O. Zhou, Appl. Phys. Lett. 89, 103111 (2006).
  • 2A. Haga, S. Senda, Y. Sakai, Y. Mizuta, S. Kita, and F. Okuyamaa, Appl. Phys. Lett. 84, 2208 (2004).
  • 3S. Senda, Y. Sakai, Y. Mizuta, S. Kita, and F. Okuyamaa, Appl. Phys. Lett. 85, 5679 (2004).
  • 4H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi, and F. Okuyamab, Appl. Phys. Lett. 78, 2578 (2001).
  • 5Y.-H. Song, J.-W. Kim, J.-W. Jeong, J.-T. Kang, S. Choi, K. E. Choi, and S.-J. Ahn, in IEEE 25th International Vacuum Nanoelectronics Conference, Jeju, Korea (2012), pp. 102.
  • 6J.-W. Jeong, J.-W. Kim, J.-T. Kang, S. Choi, S. Ahn, and Y.-H. Song, Nanotechnol. 24, 085201 (2013).
  • 7S. H. Heo, A. Ihsan, and S. O. Cho, Appl. Phys. Lett. 90, 183109 (2007).
  • 8J.-T. Kang, H.-T. Lee, J.-W. Jeong, J.-W. Kim, S. Park, M.-S. Shin, J.-H. Yeon, and H. Jeon, IEEE Electron. Device Lett. 36, 1209 (2015).
  • 9Y. Cheng, J. Zhang, Y. Z. Lee, B. Gao, and S. Dike, Rev. Sci. Instrum. 75, 3264 (2004).
  • 10G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, and J. Zhang, Appl. Phys. Lett. 81, 355 (2002).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部