期刊文献+

非线性动力系统极限环Runge-Kutta法求解的1个注记 被引量:1

Remarks on Application of the Runge-Kutta Method in Simulating Limit Cycle Oscillations
下载PDF
导出
摘要 采用Matlab软件研究了Runge-Kutta直接积分法在计算非线性动力系统极限时存在的一个问题:单周期解误判为双周期或三周期.直接调用Matlab自带程序ode45,并设定算法的相对误差.以二元机翼强非线性颤振系统为例,研究发现,采用程序默认的相对误差来控制计算精度时,单周期极限环解出现了双周期和三周期;若修改相对误差的设定值则可提高控制精度,进而得到正确的解.因此,在用Runge-Kutta法自带ode45程序计算非线性动力系统极限环时,应特别注意对计算精度的设置. Matlab software was applied to investigate a problem in implementing the Runge-Kutta method to simulate limit cycles of nonlinear dynamical systems. This problem refers to a misjudgement of the period of limit cycle oscillation, more specifically, a period-1 solution would possibly be considered to be period-2 or period-3. The relative errors of the results can be adjusted when directly calling the Matlab programs such as ode45. Taking the strongly nonlinear flutter system of an airfoil as an example, it revealed that, a period-1 limit cycle could be erroneously simulated as a period-2 or period-3 one. The correct solution can be obtained by improving the relative accuracy. This study demonstrates that it is worthy of paying more attention to the accuracy of the Runge-Kutta method, especially when used in simulating limit cycles.
作者 黄文恺 浣石
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2016年第4期21-25,共5页 Journal of South China Normal University(Natural Science Edition)
基金 广东省科技计划项目(2013B090500123)
关键词 RUNGE-KUTTA法 非线性动力系统 极限环 相对误差 Runge-Kutta method nonlinear dynamical system limit cycle relative error
  • 相关文献

参考文献14

  • 1WANG C C,CHEN C L, YAU H T. Bifurcation and cha-otic analysis of aeroelastic systems [ J ]. Journal of Compu-tational and Nonlinear Dyamics, 2014, 10 ( 9 ) : Art021004,13pp.
  • 2林洁贤.Van der Pol方程极限环的摄动—迭代解法[J].华南师范大学学报(自然科学版),1997,29(2):81-84. 被引量:1
  • 3梁海华,吴奎霖.一类三次系统的正规形和无环性[J].华南师范大学学报(自然科学版),2011,43(2):28-32. 被引量:1
  • 4CHEN Y M,LIU J K. Nonlinear aeroelastic analysis of anairfoil-store system with a freeplay by precise integrationmethod [ J ]. Journal of Fluids and Structures, 2014, 46(4): 149-164.
  • 5DAI H H,YUE X K,LIU C S. A multiple scale time do-main collocation method for solving non-linear dynamicalsystem [ J ]. International Journal of Non-linear Mechanics,2014, 67(6): 342-351.
  • 6LIAO ShiJun,WANG PengFei.On the mathematically reliable long-term simulation of chaotic solutions of Lorenz equation in the interval [0,10000][J].Science China(Physics,Mechanics & Astronomy),2014,57(2):330-335. 被引量:5
  • 7CHUNG K W,HE Y B, LEE B H K. Bifurcation analysisof a two-degree-of-freedom aeroelastic system with hyste-resis structural nonlinearity by a perturbation-incrementalme-thod[ J]. Journal of Sound and Vibration, 2009, 320(3): 163-183.
  • 8MURUA J, PALACIOS R,GRAHAM J M R. Assessmentof wake-tail interference effects on the dynamics of flexi-ble aircraft [ J ] . AIAA Journal, 2012, 50(7): 1575 -1585.
  • 9LEE B H K,PRICE S J,WONG Y S. Nonlinear aero-elastic analysis of airfoils : bifurcation and chaos[ J]. Pro-gress Aerospace Science, 1999, 35(3) : 205-344.
  • 10LIU L P,DOWELL E H. The secondary bifurcation of anaeroelastic airfoil motion : effect of high harmonics [ J ].Nonlinear Dynamics, 2004,37(3) : 31-49.

二级参考文献21

  • 1李建平,曾庆存,丑纪范.Computational uncertainty principle in nonlinear ordinary differential equations——Ⅱ.Theoretical analysis[J].Science China(Technological Sciences),2001,44(1):55-74. 被引量:18
  • 2ARTES J C, LLIBRE J. Nonexistence of limit cycles for a class of structurally stable quadratic vector fields [ J ]. Disc Contin Dyn Sys,2007 ,17 :259 - 270.
  • 3BRIESHORN E, KNORRER H. Plane algebraic curves [ M ]. Basel : Birkhauser, 1986.
  • 4LLIBRE J,JESIJS S,PEREZ D R,et al. Phase portraits of a new class of integrale quadratic vector fields [ J ]. Dynamics of continuous, Discrete and Impulsive systems ,2000,7:595 -616.
  • 5HOROZOV E, ILIEV I D. On the number of limit cycles in perturbations of quadratic Hamihonian systems [ J ]. Proc London Math Soc, 1994,69 : 198 - 224.
  • 6CAIRO L, LLIBRE J. Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 2 [ J ]. Nonlin Anal, 2007,67:327 - 348.
  • 7LLIBRE J, SWIRSZCZ G. Relationships between limit cycles and algebraic invariant curves for quadratic systems [ J]. J Diff Eqns ,2006,229:529 - 537.
  • 8DARBOUX G. Memoire sur les equations differentielles algebriques du premier ordre et du premier degre[ J ]. Bull Sci Math, 1878,2:60 - 96.
  • 9LLIBRE J, ZHANG X. Darboux theory of integrability in C^n taking into account the multiplicity [ J ]. J Diff Eqns, 2009,246:541 - 551.
  • 10CHRISTOPHER C, LLIBRE J, PANTAZI C, et al. Darboux integrability and invariant algebraic curves for planar polynomial systems [ J ]. J Phys A : Math Gen, 2002,35 : 2457 - 2476.

共引文献14

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部