期刊文献+

基于综合相似度与任务紧要度的个性化任务推荐

Personalized Task Recommendation Based on Integrated Similarity and Item Significance
下载PDF
导出
摘要 研究了如何将协同过滤推荐应用于IT项目外包平台,实现个性化任务推荐,提出了1种融合用户Profile文本相似度、任务选择相似度及任务紧要度的协同推荐方法.该方法将用户对任务的选择行为转换为用户-任务类选择矩阵,并以此计算用户间的选择相似性;用户profile文本相似性用于平衡用户选择相似性并形成用户综合相似性,算法中任务紧要度用于度量任务的时限性与经济性,设置合适的阈值来构建待推荐任务集.在真实数据集上的实验结果表明,提出的个性化推荐方法具有较高的推荐准确度,并在一定程度上缓解冷启动与数据稀疏性问题. The area of collaborative filtering (CF) applied in IT project outsourcing is studied and the researches on personalized task recommendation are carried out. Based on this, a personalized task recommendation method is presented combined with Profile text similarity, task selection similarity and integrated similarity. This method transforms the users' selection behavior into user items-class selection matrix, and it is used to compute the selection similarity among users. User' s profile text similarity is also considered to balance the selection similarity, while integrated similarity is applied to measure the timeliness and values and build waiting recommendation item set by choosing the proper threshold. The experimental results indicate that the proposed method is effective and it could be used to alleviate the data sparseness and cold start problems.
作者 胡致杰 印鉴
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2016年第4期106-112,共7页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(61033010 61272065) 广东省自然科学基金项目(S2011020001182 S2012010009311) 广东省科技计划项目(2013B090200006)
关键词 协同过滤 综合相似度 项目紧要度 推荐系统 collaborative filtering integrated similarity items significance recommendation system
  • 相关文献

参考文献15

  • 1KOREN Y. Collaborative filtering with temporal dynamics[J]. Communications of the ACM,2010,53(4) :95.
  • 2孙光福,吴乐,刘淇,朱琛,陈恩红.基于时序行为的协同过滤推荐算法[J].软件学报,2013,24(11):2721-2733. 被引量:163
  • 3PARK S T,PENNOCK D M. Applying collaborative filte-ring techniques to movie search for better ranking andbrowsing [ C] //Proceedings of the 13th ACM SIGKDD In-ternational Conference on Knowledge Discovery and DataMining. New York:ACM, 2007:556.
  • 4SARWAR B,KARYPIS G,KONSTAN J, et al. Applica-tion of dimensionality reduction in recommender sys-tems一A case study [ C] // Proceedings of the 6th ACMSIGKDD International Conference on Knowledge Disco-very and Data Mining. Boston: [ s.n. ],2000:97.
  • 5DENG A L, ZHU Y Y, SHI Y Z. A collaborative filteringrecommendation algorithm based on item rating prediction[J] . Journal of Software,2013,14(9) :1626.
  • 6黄创光,印鉴,汪静,刘玉葆,王甲海.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. 被引量:217
  • 7SARWAR B,KARYPIS G,KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C ] // Proceedings of the 21th International Conferenceon World Wide Web. New York:ACM, 2012: 285-295.
  • 8陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 9邓华平.基于项目聚类和评分的时间加权协同过滤算法[J].计算机应用研究,2015,32(7):1966-1969. 被引量:11
  • 10朱强,孙玉强.一种基于信任度的协同过滤推荐方法[J].清华大学学报(自然科学版),2014,54(3):360-365. 被引量:13

二级参考文献101

共引文献483

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部