期刊文献+

基于内联三维网络复合材料自修复实验及数值模拟 被引量:2

Experiment and numerical simulation of composites with interconnected three dimensional mendable polymer networks
下载PDF
导出
摘要 通过用热塑性树脂纤维EMAA将铺层好的预浸料沿厚度方向进行缝合及平面方向进行编入,建立起内联三维自修复网络,固化成型之后加工成双悬臂梁(DCB)试件。根据ASTM D5528—01标准测试了试件的Ⅰ型层间断裂韧性。实验结果表明,内联自修复网络层合板的Ⅰ型层间断裂韧性比无自修复网络层合板提高了约116%,自修复后,试件断裂韧性得到很好的恢复,修复效率约为164%。同时,在基于粘聚区的界面单元法基础上,建立了模拟修复剂及树脂基体的双分区粘聚区模型,通过有限元分析方法研究了无修复剂试件、含内联自修复网络试件及自修复后试件的分层裂纹扩展过程,数值结果与实验结果基本吻合,更好地解释了含内联自修复网络试件的层间增韧及自修复机理。 Composite prepreg was stitched in the through-thickness and plane direction to create a 3D self-healing network of EMAA fibres. Then the composite laminates were cured and cut into double cantilever beam (DCB) specimens. The mode I inter- laminar fracture toughness was measured according to ASTM D5528--01 standard. The experimental results show that the stitched EMAA fibres increase the mode I interlaminar fracture toughness (by ~ 116%) of the laminate, and the laminates using mendable polymer stitching have high recovery in the delamination fracture toughness ( - 164% compared to the original material). In addi- tion, based on the interface element method of the cohesive zone, the cohesive zone model with two partitions was established to simulate the healing agent and the epoxy resin. The propagation of cracks for the specimens was analyzed by using the finite element method including before and after self-healing. The numerical results are well in agreement with the experimental results and the toughening and self-healing mechanism of the laminates with three dimensional mendable polymer networks is explained by numeri- cal analysis.
出处 《固体火箭技术》 EI CAS CSCD 北大核心 2016年第3期401-406,共6页 Journal of Solid Rocket Technology
基金 国家自然科学基金(11372220) 教育部留学回国人员科研启动基金
关键词 智能复合材料 Ⅰ型层间断裂韧性 自修复 分区粘聚区模型 functional composites I interlaminar fracture toughness self-healing cohesive zone models with partition
  • 相关文献

参考文献17

  • 1Wu D Y, Meure S, Solomon D.Self-healing polymeric materi- als:a review of recent developments[J] .Progress in Polymer Science, 2008,33 ( 5 ) : 479-522.
  • 2Murphy E B, Wudl F.The world of smart healable materials [ J ].Progress in Polymer Science, 2010,35 ( 1 ): 223-251.
  • 3Trask R S, Williams G J, Bond I P.Bioinspired self-healing of advanced composite structures using hollow glass fibres [ J ]. Journal of the Royal Society Interface,2007,4(13) .363-371.
  • 4梁大开.基于空心光纤的智能结构自诊断、自修复系统[J].航空维修与工程,2004(3):20-23. 被引量:4
  • 5王瑞,刘星,李婷婷.自修复微胶囊分散对复合材料拉伸性能的影响[J].复合材料学报,2012,29(3):90-97. 被引量:7
  • 6Yang J, Keller M W, Moore J S, et al.Microencapsulation of i- socyanates for self-healing polymers [ J ]. Macromolecules, 2008,41 (24) : 9650-9655.
  • 7Chen X, Dam M A, Ono K, et al. A thermally remendable cross-linked polymeric material [ J ]. Science, 2002, 295 (5560) : 1698-1702.
  • 8章明秋,容敏智,阮文红.非层状纳米无机粒子/热塑性聚合物复合材料制备方法研究进展[J].复合材料学报,2011,28(5):1-11. 被引量:6
  • 9Hayes S A, Jones F R, Marshiya K, et al.A serf-healing ther- mosetting composite material[ J] .Composites Part A: Applied Science and Manufacturing, 2007,38 (4) : 1116-1120.
  • 10Varley R J, Van der Zwaag S. Autonomous damage initiated healing in a thermoresponsive ionomer[ J ] .Polymer Interna- tional ,2010,59(8) : 1031-1038.

二级参考文献60

  • 1沈玺,高雅男,徐政.硅烷偶联剂的研究与应用[J].上海生物医学工程,2006,27(1):14-17. 被引量:57
  • 2周红军,容敏智,章明秋,阮文红.纳米SiO_2/聚丙烯复合材料的反应性增容[J].高分子学报,2007,17(2):158-164. 被引量:14
  • 3Zhang M Q, Rong M Z, Friedrich K. Processing and properties of non-layered nanoparticle reinforced thermoplastic composites [M]/ / Nalwa H S. Handbook of organic-inorganic hybrid materials and nanocomposites. California: American Science Publishers, 2003.
  • 4Cho J W, Paul D R. Nylon 6 nanocomposites by melt compounding[J]. Polymer, 2001, 42: 1083-1094.
  • 5Novak B M. Hybrid nanocomposite materials between inorganic glasses and organic polymers[J]. Advanced Materials, 1993, 5(6): 422-433.
  • 6Guidotti B R, Herzog E, Bangerter F. Modification of TiO2 surface by reaction with acetals, ketals, orthoesters and orthocarbonates[J]. Journal of Colloid and Interface Science, 1997, 191: 209-215.
  • 7Rong M Z, Zhang M Q, Ruan W H. Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: A review[J]. Materials Science and Technology, 2006, 7: 787-796.
  • 8Kohji Y, Takafumi Y, Yutaka S, Hiroyuki K. Preparation of mondispersed polymer-modified silica particles by radical polymerization using silica colloid and introduction of functional groups on the composites surface [J]. Polymer Bulletin, 1992, 28: 663-672.
  • 9Espiard P, Guyot A. Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica: 2. Grafting process onto silica [J]. Polymer, 1995, 36: 4391-4395.
  • 10Hayashi S, Takeuchi Y, Eguchi M, Iida T, Tsubokawa N. Graft polymerization of vinyl monomers initiated by peroxycarbonate groups introduced onto silica surface by michael addition [J]. Journal of Applied Polymer Science, 1999, 71: 1491-1497.

共引文献14

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部