期刊文献+

基于分数阶微积分理论的新型三维末制导律 被引量:4

Novel 3D terminal guidance law based on the theory of fractional order calculus
下载PDF
导出
摘要 针对机动目标拦截问题,设计了一种基于分数阶微积分理论的新型三维末制导律。首先,介绍了分数阶微积分理论的定义及其相关性质,通过分析弹目拦截的空间几何关系,基于传统比例导引律(Proportional Navigation简称PN),设计了分数阶微积分比例制导律(Fractional order calculus proportional navigation简称FOCPN);其次,对设计FOCPN制导律的过载特性及其能量控制特点进行研究,通过分析前置角的变化,研究了FOCPN制导律的弹道平稳度;同时,运用小偏量运动学模型,分析了FOCPN对自动驾驶仪参数变化的鲁棒特性。最后,通过仿真表明,新设计的FOCPN制导律制导精度高,拦截时间短,过载变化较为平稳,解决了传统PN末端视线角速率发散导致的过载激增问题,可有效拦截机动目标。 A novel terminal guidance law based on the fractional calculus was derived aiming at intercepting the maneuvering target.Firstly, the definitions and properties of the fractional order calculus were introduced, the fractional order calculus proportional navigation(FOCPN) was proposed based on the traditional proportional navigation(PN) after analyzing the relative motion relation. Secondly, the characteristic of the load and the control effort of FOCPN were studied, and the trajectory stability of the FOCPN was researched through analyzing the change of leading angle, also the robust of FOCPN against autopilot parameters was analyzed by small deviator kinematics model.At last, simulation result shows that, compared with the traditional PN law, the new designed FO- CPN has the higher guidance precision and the shorter intercept time, and it solves the problem of overload increasing sharply caused by divergence of line of sight rate.The new designed guidance law can intercept maneuvering target effectively.
出处 《固体火箭技术》 EI CAS CSCD 北大核心 2016年第3期428-435,共8页 Journal of Solid Rocket Technology
基金 国家高科技计划 航空科学基金项目(20130196004 20140196004)
关键词 分数阶微积分 制导 比例导引 过载 弹道 fractional calculus guidance proportional navigation load trajectory
  • 相关文献

参考文献21

  • 1Chose D.True proportional navigation with maneuvering target [ J ]. IEEE Transaction on aerospace and electronic systems, 1994,30( 1 ) :229-237.
  • 2Guelman M.A qualitative study of proportional navigation[ J]. IEEE Transaction on aerospace and electronic systems, 1971, 7(4) :637-643.
  • 3Guelman M, Shinr J. Optimal guidance law in the plane [ J ]. IEEE Journal Guidance and Control Dynamic, 1996,7(4): 471-476.
  • 4张旭,雷虎民,曾华,肖增博,叶继坤.带落角约束的自适应比例制导律[J].固体火箭技术,2011,34(6):687-692. 被引量:11
  • 5Talole S E,Banavar R N.Proportional navigation through pre- dictive control [ J ]. IEEE Journal Guidance and Control Dy- namic, 1998,21 (6) : 1004-1006.
  • 6Li C Y, Jing W X. Geometric approach to capture analysis of PN guidance law [ J ]. Aerospace Science and Technology, 2008,12.177-183.
  • 7Dhananjay N, Lum Kai-yew, Xu Jian-xin. Proportional naviga- tion with delayed line-of-sight rate[ J] .IEEE Trans.on control system technology, 2013,21 ( 1 ) : 247-253.
  • 8Satadal Ghosh, Debasish Ghose and Soumyendu Raha. Three dimensional PN based impact angle control for higher speed nonmaneuvering targets [ C]//2013 American Control Con- ference (ACE) , Washington, DC, USA, June 17-19, 2013: 31-36.
  • 9In Soo Jeon, Jin Ik Lee. Optimality of proportional navigation based on nonlinear formulation [ J ]. IEEE Transactions on Aerospaee and Electronic Systems, 2010, 46 (4) : 2051- 2055.
  • 10Podlubny I. Fractional differential equations [ M ].San Diego : Acdamic Press, 1999.

二级参考文献96

共引文献47

同被引文献28

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部