期刊文献+

基于切削力预测模型的复杂曲面铣削进给速度优化 被引量:5

Feedrate optimization of complex surface milling based on predictive model of cutting force
原文传递
导出
摘要 针对复杂曲面恒定进给速度带来加工效率低下及表面质量差的情况,提出了基于切削力预测模型的铣削进给速度优化方法.首先,通过对刀位轨迹、曲面与刀具几何、刀/工切削接触区及动态切削厚度的分析计算,建立了多轴加工复杂曲面的切削力预测模型,从而得到了进给速度与切削力之间的映射关系.然后将给定的参考切削力与每个刀位点处的最大切削力之差的绝对值作为优化目标函数,通过Newton-Raphson迭代算法来调整原刀位点文件中的进给速度,以确保切削力的恒定以及机床系统的运行平稳.最后,以模型桨桨叶为对象,开展了相应的加工实验.实验结果表明:提出的优化方法使桨叶精加工的时间缩短了25%以上,表面残余应力和显微硬度得到增加,这对提高桨叶曲面的加工效率与改善加工表面质量具有明显的效果,从而验证了所提出的进给速度优化方法的有效性. In terms of the low machining efficiency and bad surface quality using constant feedrate in complex surface milling, a feedrate optimization method is proposed based on cutting force model. Firstly, by the analysis and calculation of the tool path, the geometry of complex surface and tool, tool-workpiece engagement zone and uncut chip thickness, a cutting force model is derived in multi-axis maching of complex surface and the mapping relation is obtained between feedrate and cutting force. Then the objective function about the absolute value of difference between the reference cutting force and the maximum one calculated in each tool position is put forward. Then the method adopts Newton-Raphson iteration algorithm to alter the feedrate in the original tool path file, thus ensures the constant cutting forces and enhance steadiness of machining process. The experiment is carried out about model propeller, the results show that the proposed optimization method ensures the machining time of the blade reduced by more than 25%, the surface residual stresses and micro-hardness machining accuracy to be increased, which has a clear effect on increasing the machining efficiency and improving the machining surface quality of the blade. This thus validates the effectiveness of the proposed optimization method.
出处 《中国科学:技术科学》 EI CSCD 北大核心 2016年第7期722-730,共9页 Scientia Sinica(Technologica)
基金 国家重点基础研究发展计划(编号:2014CB046704) 国家科技支撑计划(编号:2014BAB13B01)资助项目
关键词 进给速度优化 切削力模型 复杂曲面 加工效率 加工表面质量 feedrate optimization, cutting force model, complex surface, machining efficiency, machining surface quality
  • 相关文献

参考文献14

  • 1Davim J P. Machining of Complex Sculptured Surfaces. Berlin1: Springer, 2012.
  • 2Kurt M, Bagci E. Feedrate optimisation/scheduling on sculptured surface machining: A comprehensive review, applications and future directions. Int J Adv Manuf Tech, 2011, 55: 1037-1067.
  • 3Spence A D, A1tintas Y. A solid modeller based milling process simulation and planning system. J Manuf Sci Eng, 1994, 116: 61-69.
  • 4Erdim H, Lazoglu I, Ozturk B. Feedrate scheduling strategies for free-form surfaces. Int J Mach Tool Manu, 2006, 46: 747-757.
  • 5Ouzel B U, Lazoglu I. Increasing productivity in sculpture surface machining via off-line piecewise variable feedrate scheduling based on the force system model. Int J Mach Tool Manu, 2004, 44: 21-28.
  • 6Ko J H, Yun W S, Cho D. Off-line feed rate scheduling using virtual CNC based on an evaluation of cutting performance. Comput Aided Design, 2003, 35: 383-393.
  • 7Fussell B K, Jerard R B, Hemmett J G. Robust feedrate selection for 3-axis NC machining using discrete models. J Manuf Sci Eng, 2001, 123: 214-224.
  • 8Zhang L, Feng J, Wang Y, et al. Feedrate scheduling strategy for free-form surface machining through an integrated geometric and mechanistic model. Int J Adv ManufTech, 2009, 40: 1191-1201.
  • 9任斐,孙玉文,郭东明.复杂曲面加工过程多约束自适应进给率控制策略[J].大连理工大学学报,2011,51(6):819-824. 被引量:3
  • 10Ozturk E, Budak E. Modeling of 5-axis milling processes. Mach Sci Technol, 2007, 11: 287-311.

二级参考文献16

  • 1WANG W P. Solid modeling for optimizing metal removal of three-dimensional NC end milling [J]. Journal of Manufacturing Systems, 1988, 7(1) : 57-65.
  • 2IP R W L, LAU H C W, CHAN F T S. An economical sculptured surface machining approach using fuzzy models and ball-nosed cutters [J ]. Journal of Materials Processing Technology, 2003, 138(1-3) : 579-585.
  • 3JANG D, KIM K, JUNG J. Voxel-based virtual multi- axis machining [J]. International Journal of Advanced Manufacturing Technology, 2000, 16 : 709-713.
  • 4SALAMI R, SADEGHIM H, MOTAKEF B. Feed rate optimization for 3-axis ball-end milling of sculptured surfaces[J]. International Journal of Machine Tools and Manufacture, 2007, 47 : 760-767.
  • 5SUN Yu-wen, LI Dai-di, REN Fei, etal. Predictive force model based variable feedrate scheduling for high-efficiency NC machining [J]. Lecture Notes in Computer Science, 2008, 5315 : 1076-1085.
  • 6GUZELB U, LAZOGLU I. Increasing productivity in sculpture surface machining via off-line piecewise variable feedrate scheduling based on the force system model [J]. International Journal of Machine Tools and Manufacture, 2004, 44:21-28.
  • 7ERIDM H, LAZOGLU I, OZTURK B. Feedrate scheduling strategies for free-form surfaces [J]. International Journal of Machine Tools and Manufacture, 2006, 46 : 747-757.
  • 8KO J H, CHO D W. Feed rate scheduling model considering transverse rupture strength of a tool for 3D ball-end milling [J ]. International Journal of Machine Tools and Manufacture, 2004, 44:1047-1059.
  • 9BAILEY T, ELBESTAWI M A, EL-WARDANY T I, et al. Generic simulation approach for multi-axis machining, part 2: model calibration and feed rate scheduling [J]. Journal of Manufacturing Science and Engineering, Transaction of the ASME, 2002, 124: 634-642.
  • 10FUSSELL B K, JERARD R B, HEMMETT J G. Robust feedrate selection for 3-axis NC machining using discrete models [J]. Journal of Manufacturing Science and Engineering, Transaction of the ASME, 2001, 123:214-224.

共引文献2

同被引文献58

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部