Unretractivity and End-Regularity of a Graph
图的不可收缩性和end-正则性 (英文)
摘要
In this paper, a relationship among unretractivity, E-H-unretractivity andend-regularity of a graph is described.
图的半群理论是图的群理论的延伸.图的不可收缩性和end-正则性是其中受到普遍关注的课题.本文揭示了两者之间的内在联系.
参考文献10
-
1KNAUER U,NIEPORTE M.Endomorphismsof graphs I,the monoid of strong endomorphisms [J].Arch.Math.,1989,52: 607-614.
-
2KNAUER U.Endomorphisms of graphs II,various unretractive graphs[J].Arch.Math.,1990,55: 193-203.
-
3LI W M.A note on the E-S-unretractive graphs [J].Journal ofcombinatorics,informationand system science,1996,21: 27-33.
-
4LI W M.A regular endomorphism of a graph and its inverses[J].Mathematika,1994,41:189-198.
-
5WILKEIT E.Graphs with a regular endomorphism monoid [J].Arch.Math.,1996,66:344-352.
-
6KNAUER U,BOTTCHER M.Endomorphism spectra of graphs [J].Discr.Math.,1992,109:45-57.
-
7LI W M.Green's relations on the strong endomorphism monoid of a graph[J].SemigroupForum,1993,47:209 214.
-
8HARARY F.Graph Theory [M].Addison-Wesley,Reading,1969.
-
9HOWIE J M.An Introduction to Semigroup Theory [M].Academic Press,NewYork-London,1976.
-
10LI W M.An approach to construct an end-regular graph [J].Applied Mathematics -AJournal of Chinese Universities,Ser.B,1998,13: 171-178.
-
1程辉,姚兵.广义联的不可收缩性及强不可收缩性[J].甘肃科学学报,2001,13(3):15-18.
-
2LI Wei Min.E-H-Unretractivity of Bipartite Graphs[J].Journal of Mathematical Research and Exposition,2009,29(2):257-265.
-
3李为民.两个图的积的S-不可收缩性(英)[J].应用数学,1998,11(4):67-69.
-
4薛自学.关于图的E-S不可收缩性的一个结果[J].甘肃农业大学学报,1999,34(3):303-306. 被引量:1
-
5樊锁海.End-正则图[J].暨南大学学报(自然科学与医学版),1997,18(5):1-7. 被引量:2
-
6贾多杰.双星图的E—H不可收缩性[J].西北民族学院学报(自然科学版),1995,16(2):1-3.
-
7陈祥恩.图的广义字典序积的不可收缩性[J].西北师范大学学报(自然科学版),2000,36(2):1-4.
-
8李为民.树的联的end-正则性[J].数学物理学报(A辑),1999,19(3):266-269.
-
9陈祥恩.一类非End-正则图[J].西北师范大学学报(自然科学版),2004,40(2):1-2.
-
10谢虹玲,樊锁海.不连通图的End-正则性[J].暨南大学学报(自然科学与医学版),2000,21(5):7-12. 被引量:1