期刊文献+

滑坡误检测形变区域定位与分析 被引量:3

Identification and Analysis of Error Detection Areas in Landslide Deformation
原文传递
导出
摘要 植被检测是利用近景影像进行滑坡变形监测应用的一项关键步骤,滑坡近景影像中植被信息的特殊性给自动化匹配带来困难。针对经过高精度影像配准和点云滤波等处理后仍然存在形变区域检测误差,通过叠加滑坡体形变前后的数字表面模型和植被检测结果,实现对误检测形变区域的定位和分析。实验结果表明,形变区域检测误差主要来自植被剔除残余、点云滤波或点云模型不精确和数字高程模型采样误差等。 Vegetation detection is one of the key steps in landslide deformation monitoring based on close-range images.Automatic matching has been proved difficult because of the Particularity of the existing vegetation information in landslide close-range images.In order to deal with the problem of deformation detection error after high-precision image matching and point cloud filtering,this paper identifies and analyses the deformation detection error by overlaying the DSMs before and after the deformation combining with the vegetation detection result.The results indicate that the deformation monitoring errors mainly come from the residual of vegetation removal,the error of point cloud filtering or inexact point cloud model and the DEM sampling error.
出处 《测绘地理信息》 2016年第4期62-64,71,共4页 Journal of Geomatics
基金 国家自然科学基金资助项目(41101418) 国家科技支撑计划资助项目(2012BAJ23B03)~~
关键词 滑坡监测 植被检测 数字表面模型匹配 形变监测误差 landslide monitoring vegetation detection DSM matching deformation monitoring error
  • 相关文献

参考文献11

  • 1柳稼航.基于视觉特征的高分辨率光学遥感影像目标识别与提取技术研究[D].上海:上海交通大学,2010.
  • 2张倩,黄昕,张良培.多尺度同质区域提取的高分辨率遥感影像分类研究[J].武汉大学学报(信息科学版),2011,36(1):117-121. 被引量:15
  • 3Zhao Yindi,Zhang Liangpei,Li Pingxiang.Texture Feature Fusion for High Resolution Satellite Image Classification[C].International Conference on Computer Graphics,Imaging and Vision:New Trends,Beijing,China,2005.
  • 4闫利,聂倩,胡文元,崔晨风.基于对象级的ADS40遥感影像分类研究[J].武汉大学学报(信息科学版),2009,34(2):183-186. 被引量:7
  • 5詹总谦,来冰华,万杰,李楼.一种利用纹理特征和朴素贝叶斯分类器检测近景影像植被的方法[J].武汉大学学报(信息科学版),2013,38(6):665-668. 被引量:5
  • 6Zhang Keqi,Chen Shuching,Whitman D,et al.A Progressive Morphological Filter for Removing Nonground Measurements from Airborne LiDAR Data[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(4):872-882.
  • 7Zhan Zongqian,Lai Binghua.A Novel DSM Filtering Algorithm for Landslide Monitoring Based on Multiconstraints[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2015,8(1):324-331.
  • 8Lewis H G,Brown M.A Generalized Confusion Matrix for Assessing Area Estimates from Remotely Sensed Data[J].International Journal of Remote Sensing,2001,22(16):3 223-3 235.
  • 9Liu Jiahang.Study on Automatic Recognition of High Resolution Optic Remotely Sensed Images Based on Visual Features[D].Shanghai:Shanghai Jiao Tong University,2010.
  • 10Chen Zhong.Research on High Resolution Remote Sensing Image Classification Technology[D].Beijing:Graduate School of Chinese Academy of Sciences,2006.

二级参考文献26

  • 1黄昕,张良培,李平湘.基于小波的高分辨率遥感影像纹理分类方法研究[J].武汉大学学报(信息科学版),2006,31(1):66-69. 被引量:19
  • 2崔林丽,唐娉,赵忠明,郑柯,范文义.一种基于对象和多种特征整合的分类识别方法研究[J].遥感学报,2006,10(1):104-110. 被引量:14
  • 3黄昕,张良培.基于光谱变换与融合的IKONOS多光谱影像分类[J].武汉大学学报(信息科学版),2007,32(6):502-505. 被引量:4
  • 4黄昕,张良培,李平湘.基于多尺度特征融合和支持向量机的高分辨率遥感影像分类[J].遥感学报,2007,11(1):48-54. 被引量:48
  • 5Ricotta C. Evaluating the Classification Accuracy of Fuzzy Thematic Maps with a Simple Parametric Measure[J]. International Journal of Remote Sensing, 2004, 25(11): 2 169-2 176.
  • 6i.ira J, Maletti G. A Supervised Contextual Classifier Based on a Region-growth Algorithm[J]. Computers and Geosciences, 2002, 28(8): 951-959.
  • 7Frieke M B, van Coillie, l.ieven P C. Feature Selection by Genetic Algorithms in Object-based Classification of IKONOS Imagery for Forest Mapping in Flanders, Belgium[J]. Remote Sensing of Eenvlronment, 2007, 110(4): 476-487.
  • 8Benz U C, Peter H, Gregor W, et al. Multi-resolution Object-oriented Fuzzy Analysis of Remote Sensing Data for GIS ready Information[J] ISPRS Journal of Photogrammetry & Remote Sensing, 2004, 58(3) : 239-258.
  • 9Hay G J, Blaschke T, Marceau D J. A comparison of three image object methods for the multiscale analysis of landscape structure[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2003, 57(5) 327-345.
  • 10Volker W. Object-Oriented Classification of Remote Sensing Data for Change Detection[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2004, 58(3) : 225-238.

共引文献23

同被引文献26

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部