期刊文献+

CFD技术在Φ16m等大型种分槽的研究与应用 被引量:1

Research and application of CDF technology to Φ16m large seed precipitators
下载PDF
导出
摘要 近年来,新建氧化铝生产线向大型化发展,需要开发直径中16~20m甚至更大种分槽。现有种分槽搅拌研发技术手段落后,而Intermig和CBY搅拌装置沉淀结疤严重且能耗偏高,也无法满足大型种分槽的要求。我们采用软件模拟仿真技术,用自主研发的HSG/HQG高性能搅拌装置,研发成功Ф16X(37-42)m系列种分槽。本文对中16~20m种分槽HSG/HQG和Intermig搅拌装置进行了数值模拟对比分析,结合Ф16×(37~42)m系列种分槽实际应用情况,验证了高性能搅拌仿真模拟技术准确可靠、技术先进,采用HSG/HQG高性能搅拌装置的中16m种分槽具有低能耗、低沉淀结疤等优良的使用效果。 In recent years, the new alumina production line towards maximization, the diameter of Ф16 ~ 20m and more than these of seed precipitators need to be developed. Existing agitating device development and research technological means for the seed precipitator is backwardness, the Intermig and CBY agitating devices have serous scale and precipitation, and high energy consumption, so the requirements for the large seed precipitator cant be met. The Ф16× (37 ~ 42 )m series seed precipitators are successfully developed by using CFD technology and HSG/HQG agitating device with high perform- ance of independent development. In this paper the comparative analysis and numerical simulation are completed for HSG/HQG and Intermig agitating de- vice, combining with the practical application situations of Ф16 × (37 ~ 42 )m series seed precipitators, it is verified that agitating simulation technology with high performance is accurate, reliable and advanced and the Ф16 seed precipitator using HSG/HQG agitating device with high performance has char- acterized by low power consumption and few scale and precipitation.
作者 张超
出处 《轻金属》 CSCD 北大核心 2016年第7期12-16,20,共6页 Light Metals
关键词 HSG/HQGФ16~20m种分槽沉淀结疤INTERMIG CBY BRUCATO曳力 HSG/HQG Ф16 ~ 20m seed precipitator scale and precipitation Intermig CBY BRUCATO drag model
  • 相关文献

参考文献4

二级参考文献17

  • 1王峰,毛在砂,沈湘黔.Numerical Study of Solid-Liquid Two-Phase Flow in StirredTanks with Rushton Impeller(Ⅱ) Prediction of Critical Impeller Speed[J].Chinese Journal of Chemical Engineering,2004,12(5):599-609. 被引量:13
  • 2张国娟,闵健,高正明,施力田.翼形桨搅拌槽内混合过程的数值模拟[J].高校化学工程学报,2005,19(2):169-174. 被引量:23
  • 3BOHNET M, NIESMAK G. Distribution of solids in stirred suspension [J]. German Chemical Engineering, 1980 (3): 57-55.
  • 4OSHINOWO I M, BAKKER A. CFD modeling of solid suspensions in stirred tanks [C]// Symposium on Computational Modeling of Metals, Minerals and Materials, TMS Annual Meeting. Seattle, USA, 2002.
  • 5KHOPKAR A R, KASAT G R, PANDIT A, B, et al. CFD simulation of mixing in tall gas liquid stirred vessel: role of local ow patterns [J]. Chemical Engineering Science, 2006, 61 (9): 2921-2929.
  • 6ZWIETERING T N. Suspending of solid particles in liquid by agitators [J]. Chem Eng Sci, 1958, 8(3 ): 244-253.
  • 7LJUNGQVIST M, RASMUSON A. Numerical simulation of the two phase flow in an axially stirred vessel [J]. Chemical Engineering Research and Design, 2001, 79(5 ): 533-546.
  • 8MONTANTE G, MICALE G, MAGELLI F, et al. Experiments and CFD predictions of solid partiele distribution in a vessel agitated with four pitched blade turbines [J]. Chemical Engineering Research and Design, 2001,79( 8 ) : 1005-1010.
  • 9KHOPKAR A R,RAMMOHAN A R, RANADE V V, et al. Gas liquid ow generated by a Rushton turbine in stirred vessel: CARPT/CT measurements and CFD simulations [J]. Chemical Engineering Science, 2005, 60( 8 ): 2215-2229.
  • 10BRUCATO A, GRISAFI F, MONTANTE G. Particle drag coefficient in turbulent fluids [J]. Chemical EngineeringScience, 1998, 53( 18): 3295-3314.

共引文献16

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部