期刊文献+

提高煤直接液化催化剂活性的研究进展及展望 被引量:8

Improvement of catalysts activity for direct coal liquefaction
下载PDF
导出
摘要 为制备高效的煤直接液化催化剂,综述了提高煤直接液化催化剂活性的方法,分析了各方法对煤直接液化催化剂性能影响的作用原理,指出了煤直接液化催化剂研究中各方法的关键点和难点,各方法之间并非相互孤立,应有机组合以提高催化剂的活性。针对目前煤直接液化催化剂存在的问题提出了发展展望。煤直接液化催化剂活性提升的方法主要有提高催化剂前驱体的分散度,提高活性相的抗聚结性能和利用多元金属/非金属的复合/协同效应,后续研究应加强煤中灰组成对催化剂性能的影响,深入研究非金属元素对催化剂加氢和抑焦性能的影响,探索多种协同复合的催化剂制备系统,针对特定煤种研制专用高效直接液化催化剂。 In order to prepare efficient direct coal liquefaction( DCL) catalyst,methods of enhancing the activity of DCL catalyst were summarized,which mainly included enhancement of the catalyst precursor dispersion,inhibition of active phase agglomeration and synergistic effect of multi-metallic / non-metallic catalysts.The impact mechanisms on performance of DCL catalyst was discussed followed by analyzing the key and difficulty of these methods.Instead of isolating these methods,one should integrate these methods to improve the activity of DCL catalyst.In view of the existing problems in the DCL catalyst research filed,some suggestions had been proposed regarding the future research orientation.Much emphasis should be put on investigating the effect of ash component of coal varieties on the performance of DCL catalyst,the effect of non-metallic element on hydrogenation and coke inhibition performance of the catalyst,and exploring various collaborative composite catalyst preparation system.The ultimate goal was to develop highly efficient specific DCL catalyst in terms of different coal varieties.
作者 刘华
出处 《洁净煤技术》 CAS 2016年第4期105-111,共7页 Clean Coal Technology
基金 "十二五"国家科技支撑计划资助项目(2012BAA04B04)
关键词 煤直接液化 催化剂 催化活性 分散度 direct coal liquefaction catalyst catalytic activity dispersion
  • 相关文献

参考文献44

  • 1王村彦,朱晓苏,吴春来.煤直接液化催化剂及其高分散化[J].煤炭转化,1998,21(2):14-16. 被引量:12
  • 2Mccandless F P,Waterman J J,Sire D L.Coal hydrogenation and hydrocracking using a metal chloride-gaseous hydrochloric acid catalyst system[J].Industrial&Engineering Chemistry Process Design and Development,1981,20(1):91-94.
  • 3Weller S,Pelipetz M G,Friedman S,et al.Coal hydrogenation catalysts batch autoclave tests[J].Industrial&Engineering Chemistry,1950,42(2):330-334.
  • 4Hashemi R,Nassar N N,Almao P P.Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement:opportunities and challenges[J].Applied Energy,2014,133(15):374-387.
  • 5Niemeyer C M.Nanoparticles,proteins,and nucleic acids:biotechnology meets materials science[J].Angewandte Chemie International Edition,2001,40(22):4128-4158.
  • 6Gobe M,Konno K,Kandori K,et al.Preparation and characterization of monodisperse magnetite sols in WO microemulsion[J].Journal of Colloid and Interface Science,1983,93(1):293-295.
  • 7Murray C,Norris D J,Bawendi M G.Synthesis and characterization of nearly monodisperse Cd E(E=sulfur,selenium,tellurium)semiconductor nanocrystallites[J].Journal of the American Chemical Society,1993,115(19):8706-8715.
  • 8Shen S,Hidajat K,Yu L E,et al.Simple hydrothermal synthesis of nanostructured and nanorod Zn-Al complex oxides as novel nanocatalysts[J].Advanced Materials,2004,16(6):541-545.
  • 9Weller S W.Catalysis and catalyst dispersion in coal liquefaction[J].Energy&Fuels,1994,8(2):415-420.
  • 10Patzer J F,Montagna A A.Coal liquefaction catalysts[J].Industrial&Engineering Chemistry Process Design and Development,1980,19(3):382-386.

二级参考文献2

共引文献11

同被引文献103

引证文献8

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部