期刊文献+

BP网络预测H_2在煤液化油混合组分中的溶解度

Solubility prediction of H_2 in mixed solvent of coal liquefaction oil by BP neural network
下载PDF
导出
摘要 为满足煤制油工业化过程中设计和操作需要,以H_2在神华煤液化油模型组分混合溶剂中实测溶解度为基础,考察利用人工神经网络法预测H_2在该系统中溶解度的能力。结果表明,神经网络的计算精度随着循环次数的增加而提高;对于不同种类的混合溶剂,随着隐藏层个数的增加,计算值与试验值之间的相对误差呈现逐渐减小的趋势,从减小计算量的角度考虑,选定为4个隐藏层;3-4-1网络结构对于H_2在不同混合溶剂中溶解度的计算值与试验值最大相对误差为4.48%,这表明该模型能够满足H_2在该系统中溶解度的预测需要。 In order to meet the requirement of design and operation during coal oil industrialization,the practical H_2 solubility in the mixed solvent of Shenhua coal liquefaction oil was tested first,then the capacity of predicting H_2 solubility in system was investigated by artificial neural network.The results showed that the calculation precision of neural network increased with the increase of cling times. For different mixed solvent,the relative error between calculated value and experimental value gradually decreased with the increase of hidden layer quantity.To reduce calculation amount,the hidden layer quantity were set as four.The maximum relative error of 3-4-1 network for solubility of hydrogen in different mixed solvent was 4.48%.The model could meet the need of predicting solubility of H_2.
作者 罗化峰
出处 《洁净煤技术》 CAS 2016年第4期117-120,131,共5页 Clean Coal Technology
基金 山西省科技攻关(工业)资助项目(20140321003-05) 大同市科技攻关资助项目(201316)
关键词 溶解度 相平衡 人工神经网络 煤液化油模型组分混合溶剂 solubility phase equilibrium artificial neural network mixed solvent of Shenhua coal liquefaction oil
  • 相关文献

参考文献15

  • 1李克健,吴秀章,舒歌平.煤直接液化技术在中国的发展[J].洁净煤技术,2014,20(2):39-43. 被引量:55
  • 2朱天星.氢气在煤液化油中溶解度的研究[D].太原:太原理工大学,2006.
  • 3罗化峰.氢气在煤液化油中的溶解规律及其在煤高温快速液化中作用研究[D].太原:太原理工大学,2011.
  • 4Luo H F,Ling K C,Zhang W S,et al.A model of solubility of hydrogen in hydrocarbons and coal liquid[J].Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2011,33(1):38-48.
  • 5罗化峰,郭剑虹,凌开成,张卫帅,王顺华,冯伟,申峻.氢气在烃类混合溶剂中高压溶解度的测定[J].煤炭转化,2011,34(2):55-58. 被引量:10
  • 6Alvarez E,Riverol C,Correa J,et al.Design of a combined mixing rule for the prediction of vapor-liquid equilibria using neural networks[J].Industrial&Engineering Chemistry Research,1999,38(4):1706-1711.
  • 7Urata S,Takada A,Murata J,et al.Prediction of vapor-liquid equilibrium for binary systems containing HFEs by using artificial neural network[J].Fluid Phase Equilibria,2002,199(1/2):63-78.
  • 8Mohanty S.Estimation of vapour liquid equilibria of binary systems,carbon dioxide-ethyl caproate,ethyl caprylate and ethyl caprate using artificial neural network[J].Fluid Phase Equilibria,2005,235(1):92-98.
  • 9Mohanty S.Estimation of vapour liquid equilibria for the system carbon dioxide-difluoromethane using artificial neural network[J].International Journal of Refrigeration,2006,29(2):243-249.
  • 10Torrecilla J,Palomar J,Garcia J,et al.Modelling of carbon dioxide solubility in ionic liquids at sub and supercritical conditions by neural networks and mathematical regressions[J].Chemometrics&Intelligent Laboratory Systems,2008,93(2):149-159.

二级参考文献15

  • 1张玉卓.中国神华煤直接液化技术新进展[J].中国科技产业,2006(2):32-35. 被引量:40
  • 2朱天星,凌开成,申峻,王迎春,张海军.氢气在煤液化油中溶解度的测定[J].煤炭转化,2006,29(3):32-36. 被引量:10
  • 3Bergius F, Billiviller J.Germany Patent [ M ]. 1919.
  • 4Elliot M A. Chemistry of Coal Utilization ( Second Supplementary Volume) [ M] .New York :John Wiley & Sons lnc, 1981.
  • 5NEDO.Technological Innovation in the Coal Industry I R ]. I S.I. 1 : Clean Coal Technologies in Japan, 2006.
  • 6Lytle J M,Hsieh B C,Anderson L L,et al.A survey of methods of coal hydrogenation for the production of liquids [ J 1. Fuel Process- ing Technology, 1979,2 ( 3 ) : 235.
  • 7Zhcnyu L, Shidong S, Yongwang L.Coal liquefaction technologies- Development in China and challenges in chemical reaction engi- neering [ J 1. Chemical Engineering Science, 2010,65 ( l ) : 12 - 17.
  • 8NEDO.Bituminous Coal Liquefaction Technology (NEDOL) [ RI. [ S.I. ] : Clean Coal Technologies in Japan, 2006:59-60.
  • 9舒歌平.中德煤液化研究合作情况简述[J].煤炭加工与综合利用,1991(2):25-30.
  • 10赵汝娟,汪正范,曹红.煤液化中油的高效液相色谱-气相色谱-质谱分析[J]色谱,1988(06).

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部