期刊文献+

线性菲涅尔一次镜场光学效率分析 被引量:3

Optical efficiency analysis of primary linear Fresnel reflectors in CSP
下载PDF
导出
摘要 对线性菲涅尔太阳能集热一次镜场的光学效率进行了数值计算。用最大采光半角θ、反射镜列数n和镜场填充率μ来描述镜场,计算一次镜场光学效率随光线入射角γ的变化趋势。该算法的计算结果与Trace Pro及Sol Trace的计算结果一致。分析表明:线性菲涅尔一次镜场的光学效率受相邻反射镜列间的遮挡和阴影影响,加大光线入射角,镜场效率明显下降;在无阴影和无遮挡的情况下,随着入射角γ的增加,与光线垂直入射相比,镜场效率按cosγ/2倍率下降。通过计算得到光线垂直入射时,镜场不发生遮挡的临界镜场填充率及其对应的光学效率。研究结果显示:减小最大采光半角能显著增加镜场光学效率;当最大采光半角为45~60°、在正午前后6~8 h,不发生阴影和遮挡的临界镜场填充率一般低于75%;与抛物线槽式聚光器相比,设计良好的线性菲涅尔一次镜场反射镜的阴影和遮挡,使正午前后6~8 h的平均光学效率下降5.0%~8.3%。 Numerical algorithm has been developed to calculate the optical efficiency of the primary LFR system. The half maximum light receiving angle θ,mirror rows n and filling factor μ are used to describe the primary LFR system. The optical efficiency is calculated as the incident angle changes,by algorithm proved by comparison with Trace Pro and Sol Trace simulations. It is found from the analysis that the LFR system optical efficiency is influenced by blocking and shadowing between adjacent mirror rows,causing reduction as the incident angle increases. If there is no blocking and shadowing,the efficiency is cosγ/2 times the perpendicular incidence efficiency. Critical mirror filling factor,if reached blocking and shadowing will happen,is given for perpendicular incidence from the calculation,together with the corresponding efficiency. The optical efficiency of the LFR system can be improved remarkably by reducing the half maximum light receiving angle. The critical mirror filling factor,for the LFR system with the half maximum light receiving angle between 45 ° and 60 °,during the 6 ~8 hours around noon, should be smaller than 75%. Compared with PTC technology,the shadowing and blocking effects caused a reduction of 5.0%~8.3% in optical efficiency during the 6~8hours around noon for an optically optimized LFR.
出处 《可再生能源》 CAS 北大核心 2016年第7期962-969,共8页 Renewable Energy Resources
基金 中国华能集团公司科技项目(HNKJ14-H23)
关键词 线性菲涅尔 光学效率 阴影 遮挡 镜场填充率 linear Fresnel reflector optical efficiency shadowing blocking mirror filling factor
  • 相关文献

参考文献23

  • 1Mills D, Morrison G.Compact linear Fresnel Reflector solar thermal powerplants[J].Solar Energy, 2000,68 (3) : 263-283.
  • 2Areva.Areva's solar projects in India [EB/OL].http:// india.areva.com/ EN/home-1057/areva-s-solar- projects-in-india-areva-india.html, 2015-6-30.
  • 3Morin G,Karl M,Mertins M,et al.Mohen salt as a heat transfer fluid in a linear Fresnel collector -commercial application backed by demonstration [R].Beijing:the Solar PACES 2014 International Conference Proceedings, 2014.
  • 4Chen Yu. Analysis on solar linear fresnel collector and medium temperature thermal storage system [D]. Shanghai : Shanghai Jiao Tong University, 2012.10-21.
  • 5车淑平.线性菲涅尔反射系统光学和集热性能研究[D].济南:山东大学,2013.14-23.
  • 6Che Shuping. Research of optical and thermal properties of Linear Fresnel Reflector [D].Jinan :Shandong University, 2013.14-23.
  • 7杜春旭,王普,吴玉庭,马重芳.线性菲涅耳聚光系统无遮挡镜场布置的矢量分析法[J].太阳能学报,2012,33(3):397-404. 被引量:5
  • 8杜春旭,王普,吴玉庭,马重芳,郭航.线性菲涅耳不同镜场光学性能比较[J].太阳能学报,2013,34(8):1353-1359. 被引量:4
  • 9王成龙,马军,范多旺.线性菲涅尔式聚光系统的镜场布置与优化[J].光学精密工程,2015,23(1):78-82. 被引量:20
  • 10王成龙,马军,范多旺.线性菲涅尔式聚光系统单管接收器的设计与优化[J].中国科学:技术科学,2014,44(6):597-602. 被引量:14

二级参考文献68

  • 1Camacho E F, Berenguel M, Alvarado I, et al. Control of solar power systems: a survey[ A]. Proceed- ings of the 9th International Symposium on Dynamics and Control of Process Systems (DYCOPS 2010 ) [ C ] , Leuven, Belgium, 2010, 809-810.
  • 2Sizmann R. Solar power plants [ M ]. Berlin : Springer- Verlag. 1991, 17-83.
  • 3Kalogirou S A. Solar thermal collectors and applications [ J]. Energy and Combustion Science, 2004, 30(3) : 231-295.
  • 4Braun F G, Hooper E, Wand R, et al. Holding a candle to innovation in concentrating solar power technologies: A study drawing on patent data [ J ]. Energy Policy, 2011, 39(5): 2441-2456.
  • 5Richter C. Solar power and chemical energy systems SolarPACES annual report 2009 [ R ]. Koln Germany: IEA, 2010.
  • 6Novatec-Biosol. PE 1-World's first Fresnel Solar Power Plant in commercial operation [ R]. 2010.
  • 7Collado F J, Turegano J A. Calculation of the annum thermal energy supplied by a defined heliostat field [ J ]. Solar Energy, 1989, 42(2) : 149-165.
  • 8Garcia P, Ferriere A, Jean-Jacques Bezian. Codes for solar flux calculation dedicated to central receiver system applications : A comparative review [ J ]. Solar Energy, 2008, 82(3): 189-197.
  • 9Sanchez Marcelino, Romero Manuel. Methodology for generation of heliostat field layout in central receiver sys- tems based on yearly normalized energy surfaces [ J ]. Solar Energy, 2006, 80(7): 861-874.
  • 10Pitman C L, Vant-Hull L L. Performance of optimized solar central receiver systems as a function of receiver thermal loss per unit area[J]. Solar Energy, 1986, 37 (6) : 457-468.

共引文献28

同被引文献28

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部