期刊文献+

粉末和颗粒状二氧化硅气凝胶绝热材料的热导率测量 被引量:2

Thermal Conductivity Measurements on Granular and Powdered Silica Aerogel Insulation Materials
原文传递
导出
摘要 采用瞬态热带法在不同温度和不同压力下对粉末状及颗粒状SiO_2气凝胶的热导率进行了测量。采用低温氮气吸附法测量了样品的比表面积和介孔孔径分布。结果表明,两种被测样品的热导率随压力的变化规律相似,当压力约为1000 Pa时,热导率变化曲线会出现转折,当p>1000 Pa时,热导率随压力的降低而减少缓慢,当p<1000 Pa时,热导率下降很快。样品的热导率随环境温度的增加而显著增加,温度一定时,随平均孔尺寸的增大而增大。误差分析表明采用瞬态热带法测量时室温下的误差在3%以内。 The transient hot-strip method was used to measure the thermal conductivity of granular and powdered silica aerogel materials at different temperatures and pressures. The low-temperature nitrogen adsorption method was used to measure the specific surface area and mesoporous pore size distribution of the samples. The results show that The measured samples demonstrated similar patterns in thermal conductivity as gas pressure decreased. A turning point exists at approximately 1000 Pa with the thermal conductivity first declining slowly when p 〉 1000 Pa, than with an accelerated decline once p 〈 1000 Pa. The thermal conductivity of the measured granular and powdered silica aerogels distinctly increased with increasing temperature. Silica aerogel samples with larger macropores achieved greater thermal conductivity at elevated temperatures. The uncertainty analysis shows that the measurement error of THW method is within 3% at room temperature.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2016年第8期1739-1743,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金(No.51376060) 中央高校基本科研业务费项目(No.2015CB251503)
关键词 热物性 热导率 瞬态热带法 气凝胶 纳米孔绝热材料 thermophysical properties thermal conductivity transient hot-strip method aerogel nano-porous insulation material
  • 相关文献

参考文献19

  • 1HE Yaling, TAO Xie. Advances of Thermal Conductiv- ity Models of Nanoscale Silica Aerogel Insulation Material [J]. Applied Thermal Engineering, 2015, 81(1): 28-50.
  • 2WEI Gaosheng, LIU Yusong, ZHANG Xinxin, et al. Ther- mal Conductivities Study on Silica Aerogel and its Com- posite Insulation Materials [J]. International Journal of Heat and Mass Transfer, 2011, 54 (11/12): 2355-2366.
  • 3Saboktakin A, Saboktakin M R. Improvements of Rein- forced Silica Aerogel Nanocomposites Thermal Properties for Architecture Applications [J]. International Journal of Biological Macromolecules, 2015, 72(2): 230--234.
  • 4XIE Tao, HE Yaling, HU Zijun. Theoretical Study oil Thermal Conductivities of Silica Aerogel Composite In- sulating Material [J]. Internal Journal of Heat and Mass Transfer, 2013, 58 (1/2): 540- 552.
  • 5Zeng S Q, Hunt A, Greif R. Geometric Structure anti Thermal Conductivity of Porous Medium Silica Aerogel [J]. ASME Journal of Heat Transfer, 1995, 117(4): 1055 -1058.
  • 6Reichenauer G, Heinemann U, Ebert H P. Relationship between Pore Size and the Gas Pressure Dependence of the Gaseous Thermal Conductivity [J]. Colloids and Sur- faces A: Physicochemical and Engineering Aspects, 2007, 300(1/2): 204--210.
  • 7Spagnol S, Lartigue B, Trombe A, et al. Experimental In- vestigations on the Thermal Conductivity of Silica Aero-gels by a Guarded Thin-Film-Heater Method [J]. ASME Journal of Heat Transfer, 2009, 131(7): 1-4.
  • 8BI Chen, TANG Gaohui, HU Zhijie, et al. Coupling Model for Heat Transfer Between Solid and Gas Phases in Aero- gel and Experimental Investigation [J]. International Jour- nal of Heat and Mass Transfer, 2014, 79(1): 126-136.
  • 9GAO Tao, Jelle B P, Ihara T, et al. Insulating Glazing Units with Silica Aerogel Granules: the Impact of Particle Size [J]. Applied Energy, 2014, 128(3): 27-34.
  • 10GAO Tao, Jelle B P, Gustavsen A, et al. Aerogel- incorporated Concrete: an Experimental Study [J]. Con- struction & Building Materials, 2014, 52 (2): 130-136.

同被引文献19

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部