期刊文献+

亚/超临界环境下气液界面性质的分子动力学模拟 被引量:4

Molecular Dynamics Simulation of Liquid-Vapor Interface in Sub/Supercritical Surroundings
原文传递
导出
摘要 采用OPLS-AA力场对正庚烷在亚/超临界环境下的气液界面性质进行分子动力学模拟。真空环境下,得到气液相密度、界面厚度及界面张力等性质随模拟分子数、截断半径及模拟温度的变化规律,并与实验值进行对比,验证了力场模型的合理性;在真空以及由氮气形成的亚/超临界环境下,给出流体由亚临界过渡到超临界状态时的温度分布情况,总结了气液界面性质随模拟环境的变化规律:随模拟环境由亚临界过渡到超临界,气、液相密度差及界面张力减小,界面厚度增大。在低超临界状态下,界面性质与亚临界状态尚无本质区别,仅当达到较高超临界状态时,流体才表现出明显的超临界特征。 The liquid-vapor interfacial properties of n-heptane in sub/supercritical surroundings are investigated using molecular dynamics method and based on OPLS-AA. For vacuum surroundings, the variation trend of interfacial properties changing with molecular number, cut-off radius and temperature are obtained, then compared with experimental results to verify the accuracy of OPLS-AA potential function in this simulation.For sub/supereritical surroundings,the temperature distribution and interfacial properties are investigated while ambient condition changes from vacuum to supercritical one.It is found that the density difference between the liquid and gas phases as well as the surface tension decrease when the ambient conditions transition from subcritical to supercritical, but on the contrary, the interface thickness increases in the same process. However, the fluids could not become supercritical in lower supercritical surroundings, only in a sufficiently high supercritical ambient could fluids transition to supercritical state.
作者 邓磊 解茂昭
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2016年第8期1802-1807,共6页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51376029)
关键词 分子动力学 亚/超临界 气液界面 界面张力 molecular dynamics simulation sub/supercritical liquid-vapor interface surface tension
  • 相关文献

参考文献1

二级参考文献44

  • 1刘斐,魏明锐,赵卫东,孔亮.二甲基醚液滴超临界蒸发的数值模拟[J].工程热物理学报,2007,28(4):553-556. 被引量:4
  • 2Eckerle W, Rutland C. PreSICE:A Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines[R]. Arlington: Computa- tional Science Solutions, 2011.
  • 3Lyn W T. Study of burning rate and nature of combustion in diesel engines[J]. Symposium (International)on Com- bustion, 1963,9 (1) : 1069-1082.
  • 4Yang V. Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems[J]. Proceedings of the Combustion Institute, 2000,28 (1) : 925-942.
  • 5Bellan J. Supercritical (and subcritical) fluid behavior and modeling: Drops, streams, shear and mixing layers, and sprays[J]. Progress in Energy Combustion Science, 2000,26 (4/5/6) : 329-366.
  • 6Harstad K, Bellan J. An all-pressure fluid drop model applied to a binary mixture: Heptane in nitrogen [J]. In- ternational Journal of Multiphase Flow, 2000,26 (10) : 1675-1706.
  • 7Givler S D, Abraham J. Supercritical droplet vaporization and combustion studies[J]. Progress in Energy and Combustion Science, 1996,22 (1) : 1-28.
  • 8Zhu G S, Reitz R D, Aggarwal S K. Gas-phase unsteadi- ness and its influence on droplet vaporization in sub- and super-critical environments [J]. International Journal of Heat Mass Transfer, 2001,44 (16) : 3081-3093.
  • 9Hsiao G C, Meng H, Yang V. Pressure-coupled vaporiza- tion response of n-pentane fuel droplet at subcritical and supercritical conditions [J]. Proceedings of the Combus- tion Institute, 2011,33 (2) : 1997-2003.
  • 10Zhang H, Raghavan V, Gogos G. Subcritical and super- critical droplet evaporation within a zero gravity envi- ronment: On the discrepancies between theoretical and experimental results[J]. International Journal of Spray and Combustion Dynamics, 2009, 1 (3) : 317-338.

共引文献23

同被引文献14

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部