期刊文献+

基于大数据技术的防震减灾研究前沿综述 被引量:7

SURVEY OF RECENT ADVANCES IN EARTHQUAKE PREVENTION AND DISASTER REDUCTION WITH BIG DATA TECHNOLOGIES
下载PDF
导出
摘要 随着信息技术的高速发展,已经进入了大数据时代。除了传统的地震观测数据以外,各种新型移动互联网平台的出现,积累了大量来自于社会群体的震情反馈数据,为开展智能化防震减灾工作提供了全新的机遇。与此同时,诸如数据挖掘、机器学习等大数据技术也为高效地处理地震学相关数据、开发新型防震减灾应用技术提供了支撑。基于以上背景,整理了近年来发表在国际顶级刊物和会议上的,基于大数据技术的若干防震减灾相关前沿成果,并结合实时地震监测、应急管理及震后舆情监控等3个主要应用领域进行了较为系统的总结与讨论。最后,对大数据技术在防震减灾领域的其他潜在应用进行了展望与讨论。 With the rapid development of information technology,recent years have witnessed the arrival of the era of big data.As a result,massive user data of earthquake feedback from the emerging mobile internet platforms have been accumulated which enable a new paradigm for intelligent applications of Earthquake Prevention and Disaster Reduction(EPDR).Meanwhile,big data related technologies,such as data mining and machine learning,also provide solid support for the development of related research applications.Based on the above,this paper aims to summarize the recent research advances of EPDR with big data technologies,from the world-famous top-tier journals and conference proceedings.Specifically,the writer introduces and discusses related literature in detail by grouping them into three categories,namely real-time earthquake monitoring,emergency management,and social-opinion monitoring after earthquake.Finally,this paper concludes and discusses the other potential big data applications for EPDR in the future.
作者 赵雯佳
出处 《内陆地震》 2016年第2期122-129,共8页 Inland Earthquake
关键词 大数据 地震监测 应急管理 震后舆情监控 数据挖掘 Big data Real-time earthquake monitoring Emergency management Socialopinion monitoring Data mining
  • 相关文献

参考文献20

  • 1Harshavardhan Achrekar, Avinash Gandhe, Ross Lazarus, et al. Predicting Flu Trends using Twitter data. Workshops ( INFOCOM WKSHPS) ,2011. IEEE.
  • 2Zheng Y, Capra L, Wolfson O, et al. Urban Computing : Concepts, Methodologies,and Applications [ J ]. Acre Transactions on In- telligent Systems & Technology ,2014,5 (3) :222-235.
  • 3Lightman M, Thurakal J, Dwyer J, et al. Prospects of gravitational wave data mining and exploration via evolutionary computing [ C ]//Journal of Physics Conference Series,2006:58-65.
  • 4Silver D, Huang A,Maddison C J, et al. Mastering the game of Go with deep neural networks and tree search[ J ]. Nature,2016, 529(7587 ) :484-489.
  • 5Lewis-Beck M S,Tien C. The Job of President and the Jobs Model Forecast: Obama for 08? [J] Ps Political Science & Politics, 2008,41 (4) :687590.
  • 6Strecker U. Data mining of 3 D poststack seismic attribute volumes using Kohonen self-organizing maps[ J ]. Leading Edge ,2002, 21(10) :1 032.
  • 7维基百科.Big_data[EB/OL].http://en.wikipedia.org/wiki/Big_data,2012.
  • 8金星,廖诗荣,陈绯雯.区域数字地震台网实时速报系统研究[J].地震地磁观测与研究,2007,28(1):64-72. 被引量:33
  • 9Sakaki T, Okazaki M, Matsuo Y. Earthquake shakes Twitter users: real-time event detection by social sensors[ C ]! Nineteenth International Www Conference Acm. ACM,2010,851-860.
  • 10Avvenuti M,Cresci S,Marehetti A,et al. EARS (earthquake alert and report system) : a real time decision support system for earthquake crisis management[ C ]// Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM,2014,1 749-1 758.

二级参考文献12

共引文献34

同被引文献53

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部