期刊文献+

深度随机森林在离网预测中的应用 被引量:5

Deep Random Forest for Churn Prediction
下载PDF
导出
摘要 在电信运营商领域,离网预测模型是企业决策者用来发现潜在离网用户(即停用运营商服务)的主要手段。目前离网预测模型都是基于逻辑回归、决策树、神经网络及随机森林等浅层机器学习算法,但是在大数据的背景下,这些浅层算法在预测问题上很难取得更高的精度。因此,提出了一种新型的深层结构模型——深度随机森林,通过将传统浅层随机森林堆积成深层结构模型,获得更高的预测精度。在运营商真实数据上进行了大量实验,结果证明深层随机森林模型比传统浅层机器学习算法在离网预测问题上可以得到更好的效果。同时,增大训练数据量可以进一步提升深层随机森林的预测能力,从而证明了在大数据环境下深层模型的潜力。 Churn prediction models help telecom operators identify potential ofbnetwork user. Most previous models adopt shallow machine learning algorithms such as logistic regression, decision tree, random forest and neural networks. This paper proposed a novel deep random forest algorithm, which is a multi-layer random forest with layer-wise training. In terms of telecom operators' real data, we confirmed that the proposed deep random forest performs better than previous shallow learning algorithms in churn prediction. Moreover, increasing the volume of training data can further improve the performance of deep random forest,which implies that big data make deep models advantageous over shallow models.
出处 《计算机科学》 CSCD 北大核心 2016年第6期208-213,共6页 Computer Science
基金 国家自然科学基金(61373092 61033013 61272449 61202029) 江苏省教育厅重大项目(12KJA520004) 江苏省科技支撑计划重点项目(BE2014005) 广东省重点实验室开放课题(SZU-GDPHPCL-2012-09)资助
关键词 离网预测 深层随机森林 Churn prediction,Deep random forest
  • 相关文献

参考文献4

二级参考文献172

  • 1刘微,罗林开,王华珍.基于随机森林的基金重仓股预测[J].福州大学学报(自然科学版),2008,36(S1):134-139. 被引量:8
  • 2林成德,彭国兰.随机森林在企业信用评估指标体系确定中的应用[J].厦门大学学报(自然科学版),2007,46(2):199-203. 被引量:37
  • 3BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 4BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 5HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 6BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 7LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 8VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 9VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 10YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.

共引文献1567

同被引文献56

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部