期刊文献+

隐式反馈场景中融合社交信息的上下文感知推荐 被引量:6

Implicit Feedback Personalized Recommendation Model Fusing Context-aware and Social Network Process
下载PDF
导出
摘要 作为解决信息过载问题的有效方式,推荐系统能够根据用户偏好对海量信息进行过滤,为用户提供个性化的推荐。对如何利用隐式反馈数据进行个性化推荐进行了研究,提出了一种融合上下文信息和用户社交信息的隐式反馈推荐模型(Implicit Feedback Recommendation Model Fusing Context-aware and Social Network Process,IFCSP)。首先从数据集中提取与用户兴趣相关的上下文信息的属性集合,并以此作为分裂属性,使用决策树分类算法对"用户-产品-上下文"集合进行分类,从而将历史选择集合分组。对于要推荐的用户,根据其选择产品时的上下文信息,匹配最相似的分组,再使用基于隐式反馈的推荐模型(Implicit Feedback Recommendation Model,IFRM)预测用户对未选择产品的偏好,并结合用户的社交信息,进而对用户进行产品推荐。实验表明,该模型在平均正确率均值(MAP)和平均百分百排序(MPR)评价指标上均优于其他4种算法,可以显著提高系统的预测和推荐质量。 As a key solution to the problem of information overload,the recommender system can filter a large amount of information according to a user - s preference and provide personalized recommendations for users. This paper ex- plored the area of personalized recommendation based on implicit feedback and proposed a recommendation model, namely implicit feedback recommendation model fusing context-aware and social network process (IFCSP), which is a novel context-aware recommender system incorporating processed social network information. This model handles contextual information by applying a decision tree algorithm to classify the original user-item-context selections so that the selections with similar contexts are grouped. Then implicit feedback recommendation model (IFRM) was employed to predict the preference of a user for a non-selected item using the partitioned matrix. In order to incorporate social net- work information,a regularization term was introduced to the IFRM objective function to infer a user's preference for an item by learning opinions from his/her friends who are expected to share similar tastes. The study provides comparative experimental results based on the typical Douban and MovieLens-1M data sets. Finally, the results show that the proposed approach outperforms state-of-the-art recommendation algorithms in terms of mean average precision (MAP) and mean percentage ranking (MPR).
出处 《计算机科学》 CSCD 北大核心 2016年第6期248-253,279,共7页 Computer Science
基金 国家自然科学基金(61203072) 国家公益性科研专项(201310162) 江苏省重点研发计划(社会发展)(BE2015697)资助
关键词 推荐系统 隐式反馈 上下文感知推荐 社会化推荐 IFRM Recommender system, Implicit feedback, Context-awareness recommendation, Social recommendation, IFRM
  • 相关文献

参考文献6

二级参考文献128

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 3Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 4Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 5Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 6Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 7Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 9Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 10Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.

共引文献690

同被引文献41

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部