期刊文献+

分段光滑的半监督支持向量分类机

Piecewise Smooth Semi-supervised Support Vector Machine for Classification
下载PDF
导出
摘要 为了解决半监督支持向量分类优化模型中的非凸非光滑问题,基于分段逼近的思想提出了一个分段函数,并以此逼近非凸非光滑的目标函数。给出的分段函数可以根据不同的精度要求选择不同的逼近参数,同时构造出基于上述分段函数的光滑半监督支持向量机模型。采用了LDS(Low Density Separation)算法求解模型,分析了其对对称铰链损失函数的逼进精度。理论分析和数值实验结果都证明分段光滑的半监督支持向量机的分类性能和效率优于以往提出的光滑模型。 In order to focus on the non-smooth and non-convex problems of the semi-supervised support vector ma- chine, a piecewise function based on piecewise ideas was proposed to approach the non-convex and non-smooth objective function. The approach degree of the piecewise function to objective function can be chosen according to the accuracy demand. A new piecewise smooth semi-supervised support vector machine (PWSS3VM) model based on piecewise function was constructed. LDS algorithm was applied to solve the model and its approximation performance to the symmetric hinge loss function was analyzed. Theoretical analysis and numerical experiments confirm that PWSS3 VM model has better classification performance and higher classification efficiency than previous smooth models.
出处 《计算机科学》 CSCD 北大核心 2016年第6期276-279,共4页 Computer Science
关键词 算法 分类器 优化 半监督支持向量机 分段函数 光滑技术 Algorithms, Classifiers, Optimization, Semi-supervised support vector machine, Segment function, Smooth technologies
  • 相关文献

参考文献3

二级参考文献22

  • 1Suykensj AK, Vandewallej. Least squares support vectormachines classifiers [J]. Neural Network Letters, 1999,19(3) :293-300.
  • 2Liu Sheng, Yang Zher Real-time online forecasting model of ship rolling motion based on chaotic online LSSVM, Industrial Engineering and Engineering Management[C]//IEEE 18thCon- ferenee. Chicago:Illinois,2011 : 1732-1736.
  • 3Gao Song, Tang Yao-geng. LSSVM based missing data imputa- tion in nuclear power plant s environmental radiation monitor sensor network Advanced Computational Intelligence [C]// IEEE fifth Conference. USA: Alaska, 2012 : 479-484.
  • 4Balkin M, Niyogi P, Sindhwani V. Manifold regularization: A ge- ometric framework for learning from examples [J]. Journal of Machine Learning Research, 2006,7 : 2399-2434.
  • 5Yeung D, Wang D, Ng W, et al. Structured large margin ma- chines:Sensitive to data distribution [J]. Mack Learn. , 2007, 68:171-200.
  • 6Xue H, Chen S, Yang Q. Structural support vector machine [C]// Proc. 15th Int. Syrup. Neural Netw. Beijing, 2008,5263 : 501-511.
  • 7Wang Y, Chen S, Zhou Z. New semi-supervised classification method based on modified cluster assumption [J]. IEEE Trans. Neural Netw. Learn. Syst. , 2012,23 : 689-702.
  • 8Huang K, Yang H, King I, et al. Learning large margin elassifi- ers locally and globally[C]Proc. 21st Int. Conf. Mach. Learn. Canada: Banff, 2004:1-8.
  • 9Xue H,Chen S, Yang Q. Structural Regularized Support Vector Machine: A Framework for Structural Large Margin Classer[J]. Neural Networks, 2011,22(4) : 573-587.
  • 10Woodbury M A. Inverting modified matrices [M]. Princeton, NJ, Memo. Star. Res. Group, Princeton Univ. , 1950:42.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部