期刊文献+

On Non-commuting Sets in a Finite p-group with Derived Subgroup of Prime Order

On Non-commuting Sets in a Finite p-group with Derived Subgroup of Prime Order
下载PDF
导出
摘要 Let G be a finite group. A nonempty subset X of G is said to be noncommuting if xy≠yx for any x, y ∈ X with x≠y. If |X| ≥ |Y| for any other non-commuting set Y in G, then X is said to be a maximal non-commuting set. In this paper, we determine upper and lower bounds on the cardinality of a maximal non-commuting set in a finite p-group with derived subgroup of prime order. Let G be a finite group. A nonempty subset X of G is said to be noncommuting if xy≠yx for any x, y ∈ X with x≠y. If |X| ≥ |Y| for any other non-commuting set Y in G, then X is said to be a maximal non-commuting set. In this paper, we determine upper and lower bounds on the cardinality of a maximal non-commuting set in a finite p-group with derived subgroup of prime order.
出处 《Communications in Mathematical Research》 CSCD 2016年第3期193-197,共5页 数学研究通讯(英文版)
基金 The NSF(11301150,11371124)of China the NSF(142300410134)of Henan Province Plan for Scientific Innovation Talent(11CXRC19)of Henan University of Technology
关键词 finite p-group non-commuting set cardinality finite p-group non-commuting set cardinality
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部