摘要
Let G be a finite group. A nonempty subset X of G is said to be noncommuting if xy≠yx for any x, y ∈ X with x≠y. If |X| ≥ |Y| for any other non-commuting set Y in G, then X is said to be a maximal non-commuting set. In this paper, we determine upper and lower bounds on the cardinality of a maximal non-commuting set in a finite p-group with derived subgroup of prime order.
Let G be a finite group. A nonempty subset X of G is said to be noncommuting if xy≠yx for any x, y ∈ X with x≠y. If |X| ≥ |Y| for any other non-commuting set Y in G, then X is said to be a maximal non-commuting set. In this paper, we determine upper and lower bounds on the cardinality of a maximal non-commuting set in a finite p-group with derived subgroup of prime order.
基金
The NSF(11301150,11371124)of China
the NSF(142300410134)of Henan Province
Plan for Scientific Innovation Talent(11CXRC19)of Henan University of Technology