期刊文献+

Measures of Asymmetry Dual to Mean Minkowski Measures of Asymmetry for Convex Bodies 被引量:2

Measures of Asymmetry Dual to Mean Minkowski Measures of Asymmetry for Convex Bodies
下载PDF
导出
摘要 Khovanov type homology is a generalization of Khovanov homology.The main result of this paper is to give a recursive formula for Khovanov type homology of pretzel knots P(-n,-m, m). The computations reveal that the rank of the homology of pretzel knots is an invariant of n. The proof is based on a "shortcut" and two lemmas that recursively reduce the computational complexity of Khovanov type homology. Khovanov type homology is a generalization of Khovanov homology.The main result of this paper is to give a recursive formula for Khovanov type homology of pretzel knots P(-n,-m, m). The computations reveal that the rank of the homology of pretzel knots is an invariant of n. The proof is based on a "shortcut" and two lemmas that recursively reduce the computational complexity of Khovanov type homology.
出处 《Communications in Mathematical Research》 CSCD 2016年第3期207-216,共10页 数学研究通讯(英文版)
基金 The NSF(11271282,11371013)of China the Graduate Innovation Fund of USTS
关键词 pretzel knot Khovanov type homology Frobenius algebra TQFT pretzel knot Khovanov type homology Frobenius algebra TQFT
  • 相关文献

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部