期刊文献+

高速列车多边形多胞吸能管耐撞性分析与优化 被引量:11

Crashworthiness analysis and multi-objective optimization of multi-cell tube for high-speed train
下载PDF
导出
摘要 为设计高速列车专用吸能结构,基于吸能薄壁管多角化和多胞化的设计原则,在传统四边形管基础上提出3种不同截面薄壁管,然后利用有限元分析软件LS-DYNA以初始峰值力、比吸能和压缩力效率为评价指标对这4种截面薄壁管轴向吸能性能进行对比分析。研究结果表明T4管具有较强的吸能性能,能够满足高速列车碰撞吸能的需求。为了进一步提升T4管的吸能性能,以内管边长和壁厚为设计变量,以比吸能和初始峰值力为优化函数,采用多目标粒子群优化算法对其进行多目标结构优化,得到pareto前沿解集。利用优化结果与原设计对比发现,在峰值力一定时优化前和优化后的比吸能仅相差了0.11%,这说明原方案中T5管的结构尺寸设计的较为合理。 To design the energy-absorbing structure of high-speed train, based on the principle of multi cornerand multi cell, three thin-walled tubes with different cross-sectional shapes were proposed and analyzed numerically;meanwhile, conventional square tube was also analyzed for comparison. The results show that T4 tube hasbetter performance in energy absorption. Then, the multi-objective optimization for T4 tube was conducted to achievemaximum specific energy absorption and minimum peak crushing force. The pareto frontier was obtained.Using the optimization result, the difference between the optimized tube and original tube was small, whichmeans the original design is a good choice.
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2016年第7期1386-1392,共7页 Journal of Railway Science and Engineering
基金 高铁联合基金资助项目(U1334208) 中南大学中央高校基本科研业务费专项资金资助项目(2015ZZTS210)
关键词 高速列车 吸能结构 多胞管 多目标优化 high-speed train energy-absorbing structure multi-cell tube multi-objective optimization
  • 相关文献

参考文献1

二级参考文献16

  • 1Marsolek J, Reimerdes H G. Energy absorption of metallic cylindrical shells with induced non-axisymmetric folding patterns[J]. International Journal of Impact Engineering, 2004, 30(8/9): 1209-1223.
  • 2Hosseinipour S J, Daneshi G H. Experimental studies on thin-walled grooved tubes under axial compression[J]. Experimental Mechanics, 2004, 44(1): 101-108.
  • 3Alexander J M. An approximate analysis of the collapse of thin cylindrical shells under axial load[J]. Quarterly Journal of Mechanics and Applied Mathematics, 1960, 13(1): 10-15.
  • 4Abramowicz W, Jones N. Dynamic axial crushing of square tubes[J]. International Journal of Impact Engineering, 1984, 2(2): 179-208.
  • 5Abramowicz W, Jones N. Dynamic progressive buckling of circular and square tubes[J]. International Journal of Impact Engineering, 1986, 4(4): 243-270.
  • 6Huang X, Lu G, Yu T X. Energy absorption in splitting square metal tubes [J]. Thin-Walled Structures, 2002, 40(2): 153-165.
  • 7Marzbanrad J, Mehdikhanlo M, Saeedi Pour A. An energy absorption comparison of square, circular and elliptic steel and aluminum tubes under impact loading[J]. Turkish Journal of Engineering and Environmental Sciences, 2009, 33(3): 159-166.
  • 8Aktay L, Toksoy A K, Guden M. Quasi-static axial crushing of extruded polystyrene foam-filled thin-walled aluminum tubes: Experimental and numerical analysis[J]. Materials and Design, 2006, 27(7): 556-565.
  • 9Gharnarian A, Zarei H R, Abadi M T. Experimental and numerical crashworthiness investigation of empty and foam-filled end-capped conical tubes[J]. Thin-Walled Structures, 2011, 49(10): 1312-1319.
  • 10Alavi Nia A, Parsapour M. An investigation on the energy absorption characteristics of multi-cefi square tubes[J]. Thin-Walled Structures, 2013, 68: 26-34.

共引文献11

同被引文献68

引证文献11

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部