期刊文献+

改进的粒子滤波算法及其在车牌跟踪中的应用 被引量:1

Improved particle filter algorithm and its application in target tracking
下载PDF
导出
摘要 针对粒子滤波算法精度、效率不高及样本贫化等问题,提出通过量子粒子群算法和自适应遗传算法改进的粒子滤波算法。在粒子滤波重采样之后,考虑采用量子粒子群算法的位置更新方程对粒子分布进行改善;再按适应度大小对样本排序,滤除适应度值低于平均水平的粒子,选取相应数量较优粒子替换被滤除粒子。为保证样本多样性和有效粒子数量,引入自适应遗传算法对粒子进行交叉、变异操作。选择非线性目标跟踪模型和分时恒定值模型对本文改进算法进行仿真,仿真结果表明本文算法精度、数值稳定性均高于同类算法;最后将本文算法运用于汽车视频跟踪实验中,实验结果表明本文算法对目标跟踪中物体快速运动、光线和背景剧烈变化的情况都有准确的跟踪效果。 To solve the problems of low accuracy, inefficiency and sample impoverishment of particle filter method, the improved method combining quantum particle swarm optimization and adaptive genetic algorithm was proposed.After re-sampling, the particle distribution was improved by the position renewal equation of the quantumparticle swarm optimization. Then the samples were sorted according to their fitness, and the particles with fitnessvalues less than average fitness were filtered. Then optimal samples were selected to replace the abandoned onesand crossover, mutate with adaptive genetic algorithm, so as to ensure the sample validity and diversity. Themodified algorithm was simulated in nonlinear target tracking model and time-constant value model and proved tobe high in algorithm accuracy and numerical value stability. This method was also applied to the car tracking experimentand proved to be very efficient and accurate especially under the condition that the target moved fast andthe intensity and background changed dramatically.
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2016年第7期1393-1400,共8页 Journal of Railway Science and Engineering
基金 国家自然科学基金资助项目(U1334205)
关键词 粒子滤波 车牌跟踪 量子粒子群算法 自适应遗传算法 particle filter license plate tracking quantum particle swarm optimization adaptive genetic algorithm
  • 相关文献

参考文献6

二级参考文献48

  • 1张昌达.航空磁力梯度张量测量——航空磁测技术的最新进展[J].工程地球物理学报,2006,3(5):354-361. 被引量:100
  • 2方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 3Dorin Comaniciu, Visvanathan Ramesh, Peter Meer. Kernel-based object tracking [J]. IEEE Trans. Pattern Anal. Mach. Intell(S0162-8828), 2003, 25(5): 564-577.
  • 4Michael Isard, Andrew Blake. CONDENSATION Conditional Density Propagation for Visual Tracking [J]. International Journal of Computer Vision(S0920-5691), 1998, 29(1): 5-28.
  • 5Fatih Porikli, Oncel Tuzel. Multi-kernel object tracking [C]//IEEE International Conference on Multimedia and Expo, Amsterdam, Netherlands, July6, 2005: 1234-1237.
  • 6LI Pei-hua, ZHANG Tian-wen. Visual Contour Tracking based on Particle Filters [J]. Image and Vision Computing (S0262-8856), 2003, 21: 111-123.
  • 7Cody Kwok, Dieter Fox, Marina Meil. Adaptive Real-Time Particle Filter for Robot Localization [C]// Proceedings of Robotics and Automation, Taipei, Taiwan, Sept l4-19, 2003, 2: 2836-2841.
  • 8Shan Caifeng, Wei Yucheng, Tan Tieniu. Real-time hand tracking using a mean shift embedded particle filter [J]. Pattern Recognition(S0031-3203), 2007, 40: 1958-1970.
  • 9Paul Brasnett, Lyudmila Mihaylova, Nishan Canagarajah, et al. Particle Filtering with Multiple Cues for Object Tracking in Video Sequences [J]. Proe. of SPIE(S0277-786X), 2005, 5685: 430-441.
  • 10Jayesh Kotecha, Petar Djuric. Gaussian Sum Particle Filtering [J]. IEEE Trans. on Signal Processing(S 1053-587X), 2003, 51(10): 2602-2612.

共引文献110

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部