期刊文献+

基于M-PML边界的Lebedev网格起伏地表正演模拟方法及稳定性分析 被引量:12

Lebedev grid finite-difference modeling for irregular free-surface and stability analysis based on M-PML boundary condition
下载PDF
导出
摘要 贴体网格作为一种'边界拟合网格',能改善传统有限差分处理起伏地表时由阶梯状网格存在所产生的虚假绕射。此外,完全匹配层(PML)技术被证明是一种能够有效消除虚假反射的重要边界条件,但采用自由地表模拟面波时,传统PML易产生不稳定现象。为实现起伏地表自由边界条件下稳定的地震波场模拟,发展一种基于弹性介质的全交错-Lebedev网格有限差分方法,并将边界条件扩展为多轴完全匹配层(M-PML)。在实现算法的基础上,通过模型试算验证新方法的正确性;并对比几种不同完全匹配层技术的稳定性差异,解释PML边界产生不稳定的机制。正演模拟结果表明,M-PML在处理起伏地表面波模拟中有更好的稳定性。 Body-fitted grid is usually ter^ned as " boundary conforning grid " , which can eliminate artifacts caused by staircaseapproximation of irregular free surface in classical finite-difference method. In addition, perfectly m atched layer ( PM L)absorbing boundary is approved to be an efficient method to suppress spurious edge reflections. When modeling Rayleighwaves with the existence of free-surface,however, the classical PML algorithm may become unstable. In order to obtain stableseismic wave simulation with an irregular free-surface, this paper proposes a full staggered grid (FSG )-Lebed evgrid finite-difference method in elastic media, and extends the boundary condition to multiaxial PML ( M -PM L ). Numerical simulationsdemonstrate the validity of the proposed method. The stability of the tw-o perfectly matched layer techniques is comparedand the instability mechanism of PML is discussed. The num erical results suggest preferred stability of the M-PML techniqueover the classical PML algorithm.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第4期47-56,共10页 Journal of China University of Petroleum(Edition of Natural Science)
基金 国家'973'课题(2014CB239006 2011CB202402) 国家自然科学基金项目(41274124) 山东省自然科学基金项目(ZR2011DQ016) 中央高校基本科研业务费专项(R1401005A)
关键词 地震波场模拟 起伏地表 Lebedev网格 多轴完全匹配层 稳定性 seism ic wave sim ulation irregular free-surface Lebedev g rid multiaxial perfectly m atched layer (M -P M L ) stability
  • 相关文献

参考文献4

二级参考文献67

  • 1郝重涛,姚陈,王迅.任意空间取向TI介质中速度随方位变化特征[J].地球物理学进展,2006,21(2):524-530. 被引量:12
  • 2孙建国.复杂地表条件下地球物理场数值模拟方法评述[J].世界地质,2007,26(3):345-362. 被引量:42
  • 3BOUCHON M, SCHULTZ C, TOKSOZ M. Effect of three-dimensional topography on seismic motion [J]. Journal of Geophysical Research, 1996, 101 ( B3 ) : 5835 - 5846.
  • 4FU L. Numerical study of generalized Lipmann- Schwinger integral equation including surface topography [J]. Geophysics, 2003, 68 (2): 665 - 671.
  • 5CARCIONE J, HERMAN G, KROODE A. Seismic modeling [J]. Geophysics, 2002, 67(4): 1304-1325.
  • 6SUN J,SUN Z, HAN F. A finite difference scheme for solving the eikonal equation including surface topography [J]. Geophysics, 2011, 76 (4): T53-T63.
  • 7RICHTER G R. An explicit finite element method for the wave equation [J]. Applied Numerical Mathematics, 1994, 16(1/2): 65-80.
  • 8KOMATITSCH D, VILOTTE J P. The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures [J]. Bulletin of the Seismological Society of America, 1998, 88(2) : 368- 392.
  • 9GRAVES R W. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences [J]. Bulletin of the Seismological Society of America, 1996, 86(4): 1091-1106.
  • 10ROBERTSSON J O A. A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography [J]. Geophysics, 1996, 61(6) : 1921 - 1934.

共引文献353

同被引文献75

引证文献12

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部