摘要
【目的】通过合适的处理,减少低能赝标介子手征微扰理论中出现的输入参数,得到符合实验的低能常数理论值,提高理论的预言性。【方法】将已有方法中出现的 Schwinger-proper time方法引入的Λ趋于无穷,并通过在介子质量770 MeV处对领头阶的低能常数进行重整化。借助 Schwinger-Dyson方程,得到所有的次领头阶低能常数。【结果】通过参数的调节,以及低能常数和耦合常数参数的关系,找到一组符合实验的参数值;减少Λ和F0两个输入参数可以得到三味和两味的低能常数。【结论】减少Λ和F0两个输入参数处理低能常数的方法是可行的。两味的低能常数对耦合常数中参数的依赖比较大,而三味的对其依赖相对较小。
Objective]There is not an effective way to calculate the low-energy constants (LECs) for the pseudoscalar meson chiral perturbation theory.There are too many input parameters, which reduce the predictability of the theory.Reducing the input parameters in the calculation was carried out through the appropriate treatment,in order to get a set of theoretical values that are consistent with the experiments.[Methods]The Schwinger-proper time method was in-troduced into theΛto infinity,and a leading order of the LECs was renormalized in the meson mass at 770 MeV.All the next leading order LECs can be obtained through Schwinger-Dyson e-quation.[Results]A set of parameters that match the experiments was obtained through meas-uring parameters and comparing the relationships between the LECs and coupling constants. Finally the input parametersΛand F0 were reduced in the three-flavor and two-flavor quark.[Conclusion]The new method that treats LECs by reducing the input parameters is feasible. Two-flavor LECs are sensitive to the coupling constants,but three-flavor LECs are not.
出处
《广西科学》
CAS
2016年第3期202-205,共4页
Guangxi Sciences
基金
国家自然科学基金项目(11565004)资助
关键词
手征微扰理论
耦合常数
低能常数
chiral perturbation theory
coupling constants
low-energy constants