期刊文献+

太阳电池用金属背反镜的吸收损耗

Absorption Loss of Metal Back Reflector for Solar Cells
下载PDF
导出
摘要 利用频域有限差分法计算获得的金属背反镜吸收损耗谱及其光电流密度谱,分析了c-Si、a-Si和GaAs三种材料电池的银背反镜的吸收损耗情况。分析过程中,电池结构采用两种形式,即平板型和织构型,且两种形式的电池结构具有相同的有源层厚度、减反膜结构、缓冲层结构、银背反镜厚度。分析表明:直接带隙a-Si和GaAs材料的银背反镜损耗小于间接带隙c-Si材料;平板型电池银背反镜的TE模损耗随入射角增加而减小,TM模损耗随入射角增加而增加;织构型电池银背反镜吸收谱的吸收峰较平板型电池多,相应的银背反镜的损耗也较平板型电池大;TM模激励的等离子体振荡吸收效应在织构型电池中表现明显。 Using the finite difference method to calculate the absorption loss spectra and the optical current density spectra of the metal back mirror, the absorption loss of the metal back mirror with three kinds of materials, c-Si, a-Si and GaAs, were analyzed. In the process of analysis, battery structure was used in two forms., the flat plate type and textured type, and two forms of cell structure had the same thickness of the active layer, antireflection film structure, buffer layer structure, silver backed mirror thickness. Analysis shows: The direct band gap of a-Si and GaAs materials with the silver back reflector mirror loss is less than the indirect band gap c-Si material ~ The loss of the TE mode of the flat panel type battery cell bank is decreased with the increase of the incident angle, and the loss of TM mode increased with the increase of the incident angle;The absorption peak of the texture type cell is more than that of the flat plate, and the loss of the corresponding silver back reflector mirror is larger than that of the flat panel; TM mode excitation of the plasma oscillation absorption effect is obvious in the texture cell.
出处 《材料导报》 EI CAS CSCD 北大核心 2016年第14期140-144,共5页 Materials Reports
基金 国家重点基础研究发展计划("973"计划)(2010CB933804) 国家自然科学基金(11304020 61575029)
关键词 金属背反镜 吸收损耗 平板型电池 织构型电池 metal back mirror, absorption loss, flat type cell, textured cell
  • 相关文献

参考文献20

  • 1Piotr K, Claudio A L. Towards the efficiency limits of silicon solar cells: How thin is too thin? [J]. Solar Energy Mater Solar Cells, 2015,143:260.
  • 2Jeong S, McGehee M D, Cui Y. All-back-contact ultra-thin silicon nanocone solar cells with 13. 7% power conversion efficiency[J]. Nat Commun, 2013,4 (1) : 2950.
  • 3Shah A, Moulin E, Ballif C. Technological status of plasma-deposi- ted thin-film silicon photovoltaics [J]. Solar Energy Mater Solar Cells,2013,119(12) :311.
  • 4Lin Y, Battaglia C, Boccard M,et al. Amorphous Si thin film based photocathodes with high phot0voltage for efficient hydrogen produc- tion[J]. Nano Lett,2013,13(11) :5615.
  • 5Reuter M, Brendle W, Tobai O L, et al. 50 mm thin solar cells with 17.0% efficiency[J]. Solar Energy Mater Solar Cells, 2009,93 (2) : 704.
  • 6Spinelli P, Ferry V E, Groep J V D, et al. Plasmonic light trapping in thin-film Si solar eells[J]. J Opt,2012,14:024002.
  • 7Yang Y, Pillai S, Mehrvarz H, et al. Plasmonic degradation and the importance of over-coating metal nanoparticles for a plasmonic solar cell[J]. Solar Energy Mater Solar Cells,2014,122.. 208.
  • 8Ferry V E, Verschuuren M A, Li H B T, et al. Light trapping in ultrathin plasmonic solar cells[J]. Opt Express,2010,18(S2):A237.
  • 9Mercaldo L V, Veneri P D, Usatii L, et al. Broadband near-field effects for improved thin film Si solar cells on randomly textured sub- strates [J]. Solar Energy Mater Solar Cells,2013,112:163.
  • 10Lin Y, Battaglia C, Boceardet M, et al. Amorphous Si thin film based photoeathodes with high photovoltage for efficient hydrogen production[J]. Nano Lett, 2013,13 (11) : 5615.

二级参考文献43

  • 1YouJ, Dou L, Yoshimura K. A Polymer Tandem Solar Cell with 10. 6% Power Conversion Efficiency[J] . Nature Communications, 2013,4 ( I ) : 1446.
  • 2Mohr NJ, Meijer A, Huijbregts M A 1, et a1. Environmental Life Cycle Assessment of Roof-Integrated Flexible Amorphous Siliconl Nanocrystalline Silicon Solar Cell Laminate[J]. Progress in Phoioioluucs , Research and Applications ,2013,21 (4) :802-815.
  • 3Zhang K, Su Z, Zhao L, et al. Improving the Conversion Efficiency ofCu2ZnSnS4 Solar Cell by Low Pressure SulIurization[J].Applied Physics Leu.ers,2014,104( 14): 141101.
  • 4Carmona C R, Malinkiewicz O, Soriano A, et al. Flexible High Efficiency Perovskite Solar Cells[J] . Energy & Emnronmerual Science, 20 14,7 (3) :994-997.
  • 5Wang S, Weil B D, Li Y, et al. Large-area Free-standing Ultrathin Single-crystal Silicon as Processable Materials[J]. Nano Leuers , 20 13,13 (9) :4393-4398.
  • 6Willeke G P. Thin Crystalline Silicon Solar Cells[J] . Solar Energy Materiols ami Solar Cells ,2002, 74( 1-4) : 191-200.
  • 7Solanki C S, Bilyalov R R, PoortmansJ, et al. Characterization of Free-Standing Thin Crystalline Films on Porous Silicon for Solar Cells[J]. Thin Solid Films ,2004 ,451452 :649-654.
  • 8Reuter M, Brendle W, Tobail 0, et al. 50 rnm Thin Solar Cells with 17.0% Efficiency[J]. Solar Energy Materials & Solar Cells ,2009 ,93: 704- 706.
  • 9CampaJ L C, Okandan M, Resnick PJ, et al. Microsystems Enabled Photovoltaics , 14.9% Efficient 14 m Thick Crystalline Silicon Solar Cell[J]. Solar Energy Materials & Solar CeLLs ,2011,95 :551-558.
  • 10Jeong S, McGehee M D, Cui Y. All-back-contact Ultra-thin Silicon Nanocone Solar Cells with 13.7% Power Conversion Efficiency[J]. Nature Communications ,2013 ,4( I ) :2950.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部