期刊文献+

基于一种改进型遗传算法的源强反算 被引量:4

Source characterization inversion by a modified genetic algorithms
下载PDF
导出
摘要 为突破遗传算法(GA)在危险化学品泄漏事故应用中存在早熟收敛等不足,有针对性地引入淘汰者基因库,提高种群多样性,避免算法过早陷入局部极值。同时,借鉴粒子群算法的跟随思想,引入启发信息,强化收敛域内的局部搜索力度,最终整理得到改进型遗传算法(MGA)。统计结果表明,MGA的计算结果更准确,误差适应性更强,可为泄漏事故现场的应急决策提供快速有效的数据支持。 Determination of emission sources characteristics is crucial to emergency decision involving hazardous chemical releases. Dominant methodology for characterizing emission sources is to optimize the cost function coupling receptor data to prior dispersion models with optimization method techniques. The literature suggests that GA is the most widely used direct optimization method for solving emission sources characteristics problems. However, the genetic algorithm has some drawbacks when it is used in engineering practice and may output premature convergence estimations, especially for the highly nonlinear problem. Loser-gene was introduced to increase population diversity and embedded search step takes current best point as searching starting point to deal with GA cataclysm problem. A modified genetic algorithm was worked out finally. A comparison analysis of data error sensitivity was made between the MGA and two confirmed hybrid genetic algorithms. The simulation results show that the MGA has better global extremum search performance and is more robust to data error to meet the needs of emergency rescue.
作者 张儒 李俊明
出处 《中国安全科学学报》 CAS CSCD 北大核心 2016年第6期57-62,共6页 China Safety Science Journal
基金 国家自然科学基金创新研究群体项目资助(51321002) 国家重点基础研究发展计划课题(2011CB706904)
关键词 改进型遗传算法(MGA) 源强反算 早熟收敛 全局寻优 误差适应性 modified genetic algorithm(MGA) emission source characteristics premature convergence global optimum data error sensitivity
  • 相关文献

参考文献2

二级参考文献25

  • 1吕武轩,施小丁,赵宝元,刘慧.危险气体扩散实时仿真的关键技术──“反求源强”方法初探[J].中国安全科学学报,1997,7(S1):35-39. 被引量:2
  • 2刘立平,牛熠.遗传算法综述[J].东莞理工学院学报,2005,12(3):48-52. 被引量:25
  • 3朱江,汪萍.集合卡尔曼平滑和集合卡尔曼滤波在污染源反演中的应用[J].大气科学,2006,30(5):871-882. 被引量:35
  • 4Keats A, Yee E, Lien F S. Bayesian inference for source determination with applications to a complex urban environment[J]. Atmospheric Environment, 2007, 41: 465-479.
  • 5Senocak I, Hengartner N W, Short M B, et al. Stochastic event reconstruction of atmospheric contaminant dispersion using Bayesian inference[J]. Atmospheric Environment, 2008, 42: 7718-7727.
  • 6Chow F K, Kosovic B, Chan S. Source inversion for contaminant plume dispersion in urban environments using building resolving simulations[J]. Journal of Applied Meteorology and Climatology, 2008, 47(6): 1553-1572.
  • 7Guo S D, Yang R, Zhang H, et al. Source identification for unsteady atmospheric dispersion of hazardous materials using Markov Chain Monte Carlo method[J]. International Journal of Heat and Mass Transfer, 2009, 52: 3955-3962.
  • 8Akcelik V, Biros G, Ghattas O, et al. A variational finite element method for source inversion for convective- diffusive transport[J]. Finite Elements in Analysis and Design, 2003, 39: 683-705.
  • 9Heemink A W, Segers A J. Modeling and prediction of environmental data in space and time using Kalman filtering[J]. Stochastic Environmental Research and Risk Assessment, 2002, 16(3): 225-240.
  • 10Elbern H, Schmidt H, Talagrand O, et al. 4D-variational data assimilation with an adjoint air quality model for emission analysis[J]. Environmental Modelling & Software, 2000, 15(6/7): 539-548.

共引文献18

同被引文献18

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部