期刊文献+

政府工作舆情监测系统的研究与实现 被引量:5

Research and Implementation of Government Work Public Opinion Monitoring System
下载PDF
导出
摘要 随着社交网络和社会媒体等互联网应用服务迅猛发展,越来越多的人通过互联网发布信息和表达观点,用户的浏览、关注、转发、评论等行为在互联网空问留下了丰富的数字足迹,用户的所言所行积累下了丰富的网络大数据。利用网络大数据,筛选出对政府工作的观点信息,并对观点进行倾向性分析,得出公众对政府工作的真实态度,可以有效地了解民意,并且根据可靠反应来对政府工作进行相应的调整和改善,最终达到为政府提供有效准确信息,提高公众对其满意度。 With the rapid development of social network and social media websites,numerous users begin to delivery information and opinions on Internet.Huge Web data is accumulated,recording users' behaviors and public opinions,e.g,comments,browsing behaviors,forwarding behaviors,and social relationships.Therefore,selecting the public views on a public policy,and then analyzing the sentimental orientation,can help to learn effective understanding of the public opinion,and to adjust and improve public policy according to the reliable reaction,in the end to provide the government with the purpose of effective information,and help improve public satisfaction.
作者 何健
出处 《微型电脑应用》 2016年第7期53-55,63,共4页 Microcomputer Applications
关键词 舆情监测 爬虫系统 倾向性分析 Public Opinion Monitoring Crawler System Sentimental Orientation
  • 相关文献

参考文献5

二级参考文献22

  • 1朱红灿,孟志青.一种基于SOM和层次凝聚的中文文本聚类方法[J].湘潭大学自然科学学报,2005,27(3):36-40. 被引量:8
  • 2WIEBE J, WILSON T, BELL M. Identifying collocations for recognizing opinions[ C]//Proceedings of the 39th Annum Meeting of the Association for Computational Linguistics. Toulouse, France: [ s. n.], 2001:427-434.
  • 3RILOFF E, WIEBE J, WILSON T. Learning subjective nouns using extraction pattern bootstrapping[ C]// Proceedings of the 7th Conference on Natural Language Learning: CoNLL-2003. Edmonton, Canada: [s.n.], 2003: 25-32.
  • 4TURNEY P, LITTMAN M. Measuring praise and criticism: Inference of semantic orientation from association[ J]. ACM Transactions on Information Systems, 2003, 21 (4) : 315 - 346.
  • 5WILSON T, WIEBE J, HWA R. Just how mad are you? Finding strong and weak opinion clauses[ C] // Proceedings of the 21st Conference of the American Association for Artificial Intelligence. San Jose, CA, US: [s.n.], 2004:761-769.
  • 6HATZIVASSILOGLOU V, MCKEOWN K R. Predicting the semantic orientation of adjectives[ C[// Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics: ACL-97. Geneva, Switzerland: [ s. n. ], 1997:174 - 181.
  • 7LAFFERTY J, MCCALLUM A, PEREIRA F. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[ C]//Proceedings of the 21 st International Conference on Machine Learning. Tokyo: [ s. n. ], 2001:282 -289.
  • 8SHA F, PEREIRA F. Shallow parsing with conditional random fields[ C]// Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology. Morristown, NJ, USA: Association for Computational Linguistics, 2003:213-220.
  • 9PHAN X H, NGUYEN L M, NGUYEN C T. FlexCRFs: Flexible conditional random field toolkit[ EB/OL]. [ 2008 - 08 - 20]. http://flexCRF, sourceforge, net.
  • 10[1]Steinbach M,Karypis G,Kumar V.A Comparison of Document Clustering Techniques[R].Technical Report,Dept.of Computer and Information Science,Linkoping,1995:143-150.

共引文献25

同被引文献37

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部