摘要
通过把资本存量、就业人数、能耗、时间等变量纳入超越对数生产函数,将碳排放总量、能源强度等变量以及区域虚拟变量作为生产无效率函数的解释变量构建随机前沿模型进行实证分析。结果显示:碳排放增长会扩大技术无效率项并降低绿色全要素生产率;技术进步降低了能源强度却引至了更多的碳排放,符合杰文斯悖论;减排技术较高的地区对应较高绿色全要素生产率增长水平;绿色全要素生产率增速比传统全要素生产率增速更快。
This paper brings the capital stock, employment, energy consumption, time as independent variables into the transcendental logarithm production function, takes the to- tal carbon emission, energy intensity, second industries proportion and the regional dummy variables as the explanatory variables of the production inefficiency function/:or constructing the stochastic frontier model, and empirically analyzes data of China. The results show that the growth of carbon emission will increase the efficiency of the technology and lead to the decline of green total factor productivity; technological progress has led to more carbon emis- sion, thus expanding the invalid rate, which conforms to the Jevons paradox; the area with higher emission reduction technology is also with higher green total factor productivity growth; green total factor productivity growth rate is bigger than the traditional total factor productivity growth rate.
出处
《数量经济技术经济研究》
CSSCI
北大核心
2016年第8期47-63,共17页
Journal of Quantitative & Technological Economics
基金
国家社会科学基金重大项目(15ZDA054)
教育部人文社会科学一般项目(13YJC790131)的资助
关键词
绿色全要素生产率
碳排放
随机前沿
绿色悖论
经济增长
Green Total Factor Productivity
Carbon Emissiom Stochastic Frontier
Green Paradox
Economic Growth