期刊文献+

认知车载网中基于簇和MAB模型的信道接入算法

A novel channel access algorithm based on clusters and MAB model in cognitive vehicular network
下载PDF
导出
摘要 针对高密度车流环境下认知车载网中车辆节点对认知信道的接入问题,提出了基于簇和MAB模型的clusters-UCB信道接入算法,通过簇内成员协作提高感知学习结果的准确性,提升算法学习速度,并且簇首通过clusters-UCB算法分布式地快速搜索出最佳信道,渐近地实现最大的时隙吞吐量。仿真实验表明,提出的算法相对于多用户的UCB算法和ε-greedy算法,遗憾值更低,并且趋近于对数形式的收敛速度更快,能够有效减少访问碰撞数,保证信道接入的公平性,提高时隙吞吐量。 Considering the cognitive channel access problem of vehicle nodes in cognitive vehicular networks with heavy traffic environment, a channel access algorithm called clusters-UCB which based on clusters and MAB model was proposed. The cooperation of cluster members could improve perception accuracy and enhance the learning speed. And using improved multi-user UCB algorithm, cluster heads could quickly search out the optimal channel in a distributed way, which could make the network asymptotically achieve the optimal slot throughput. Simulation results show that with respect to UCB algorithm and ε-greedy algorithm, the regret of the proposed algorithm is lower and the speed of approaching logarithmic form is faster. What's more, clusters-UCB can effectively reduce the number of collisions when clusters access the cognitive channels, ensuring the fairness of the channel access and achieving better slot throughput.
出处 《电信科学》 北大核心 2016年第7期27-33,共7页 Telecommunications Science
基金 国家自然科学基金资助项目(No.61371113 No.61401241) 交通运输部应用基础研究基金资助项目(No.2013-319-825-110)~~
关键词 认知车载网 信道接入 MAB模型 UCB算法 cognitive vehicular network, cluster, channel access, MAB model, UCB algorithm
  • 相关文献

参考文献9

  • 1HUANG X L,WU J,LI W,et al.Historical spectrum sensing data mining for cognitive radio enabled vehicular Ad Hoc networks[J].IEEE Transactions on Dependable&Secure Computing,2015,13(1):59-70.
  • 2POONIA R C,BHARGAVA D,KUMAR B S.CDRA:cluster-based dynamic routing approach as a development of the AODV in vehicular Ad Hoc networks[C]//2015 International Conference on Signal Processing and Communication Engineering Systems(SPACES),Jan 2-3,2015,Guntur,India.New Jersey:IEEE Press,2015:397-401.
  • 3GOONEWARDENE R T,ALI F H,STIPIDIS E.Robust mobility adaptive clustering scheme with support for geographic routing for vehicular Ad Hoc networks[J].IET Intelligent Transport Systems,2009,3(2):148-158.
  • 4DONG S,LEE J.Greedy confidence bound techniques for restless multi-armed bandit based cognitive radio[C]//The 47th Annual Conference on Information Sciences and Systems(CISS),March 20-22,2013,Baltimore,MD,USA.New Jersey:IEEE Press,2013:1-4.
  • 5朱江,陈红翠,熊加毫.基于多臂赌博机模型的信道选择[J].电讯技术,2015,55(10):1094-1100. 被引量:4
  • 6KLEINBERG R,PILIOURAS G,TARDOS E.Multiplicative updates outperform generic no-regret learning in congestion games[J].Proc Stoc,2009:533-542.
  • 7GAI Y,KRISHNAMACHARI B,JAIN R.Learning multiuser channel allocations in cognitive radio networks:a combinatorial multi-armed bandit formulation[C]//2010 IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks,April6-9,2010,Singapore.New Jersey:IEEE Press,2010:1-9.
  • 8AUER P,CESA-BIANCHI N,FISCHER P.Finite-time analysis of the multi-armed bandit problem[J].Machine Learning,2002,47(2-3):235-256.
  • 9AGRAWAL R.Sample mean based index policies with O log n regret for the multiarmed bandit problem[J].Advances in Applied Probability,1995,27(4):1054-1078.

二级参考文献15

  • 1Zhao Q,Sadler B M. A survey of dynamic spectrum ac-cess [J]. IEEE Signal Processing Magazine,2007,24(3):79-89.
  • 2Mitla J. Cognitive radio for flexible mobile multimediacommunications[J]. Mobile Network and Applications,2001,6(5):435-441.
  • 3Xu Y H,Wu Q H,et al. Decision-Theoretic DistributedChani-nel Selection for Opportunistic Spectrum Access:Strategies,Challenges and Solutions[J]. IEEE Communi-cations Survey & Tutorials,2013,15(4):1689-1713.
  • 4Dong S Y,Lee J W. Greedy confidence bound techniques for restless multi - armed bandit based Cognitive Radio[C] / / Proceedings of 2013 47th Annual Conference onInformation Sciences and Systems. Baltimore, MD:IEEE,2013:1-4.
  • 5Smallwood R,Sondik E. The optimal control of partiallyobservable. Markov processes over a finite horizon [J].Operations Research,1971:1071-1088.
  • 6Agrawal R. Sample mean based index policies withO(log(n)) regret for the multi-armed bandit problem[J].Advance Application Probability,1995,27(4):1054-1078.
  • 7AuerP,Cesa-Bianchi N,Fischer P. Finite-time Analysisof the Multi-armed Bandit Problem[J]. Machine Learn-ing,2002,47(2-3):235-256.
  • 8Robert C,Moy C, Wang C X. Reinforcement learning ap-proaches and evaluation criteria for opportunistic spectrumaccess [C] / / Proceedings of 2014 IEEE InternationalConference on Communications. Sydney: IEEE, 2014:1508-1513.
  • 9Tekin C,Liu M. Online learning of rested and restlessbandits[J]. IEEE Transactions on Information Theny,2012,58(8):5588-5611.
  • 10Dai W,Gai Y, Krishnamachari B. Efficient online learningfor opportunistic spectrum access [C]/ / Proceedings ofIEEE INFOCOM. Orlando, FL:IEEE,2012:3086-3090.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部